The domination number of exchanged hypercubes

被引:23
作者
Klavzar, Sandi [1 ,2 ,3 ]
Ma, Meijie [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Interconnection networks; Hypercube; Exchanged hypercube; Domination number; Hamming code; HAMILTONIAN CYCLES;
D O I
10.1016/j.ipl.2013.12.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exchanged hypercubes (Loh et al., 2005 [13]) are spanning subgraphs of hypercubes with about one half of their edges but still with many desirable properties of hypercubes. Lower and upper bounds on the domination number of exchanged hypercubes are proved which in particular imply that gamma(EH(2, t)) = 2(t+1) holds for any t >= 2. Using Hamming codes we also prove that gamma (EH(s, 2(k) -1)) <= (2(s) - 2(k))gamma(Q(2k-1)) + (gamma(Q(s)(-)) + 1) holds for s >= k >= 3. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 162
页数:4
相关论文
共 22 条
  • [1] Ananchuen N, 2011, STRUCTURAL ANALYSIS OF COMPLEX NETWORKS, P73, DOI 10.1007/978-0-8176-4789-6_4
  • [2] Linearly many faults in dual-cube-like networks
    Angjeli, Ariana
    Cheng, Eddie
    Liptak, Laszlo
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 472 : 1 - 8
  • [3] Arumugam S., 1998, J. Indian Math. Soc., New Ser., V65, P31
  • [4] On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
    Castro, Aline
    Klavzar, Sandi
    Mollard, Michel
    Rho, Yoomi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2655 - 2660
  • [5] Conditional edge-fault-tolerant Hamiltonicity of dual-cubes
    Chen, Jheng-Cheng
    Tsai, Chang-Hsiung
    [J]. INFORMATION SCIENCES, 2011, 181 (03) : 620 - 627
  • [6] A comment on "The exchanged hypercube"
    Chen, Yu-Wei
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2007, 18 (04) : 576 - 576
  • [7] Dvorák T, 2003, DISCRETE MATH, V262, P121
  • [8] INDEPENDENT DOMINATION IN HYPERCUBES
    HARARY, F
    LIVINGSTON, M
    [J]. APPLIED MATHEMATICS LETTERS, 1993, 6 (03) : 27 - 28
  • [9] Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
  • [10] Generalized measures of fault tolerance in exchanged hypercubes
    Li, Xiang-Jun
    Xu, Jun-Ming
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) : 533 - 537