Interior gradient bounds for solutions to the minimal surface system

被引:12
作者
Wang, MT [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
D O I
10.1353/ajm.2004.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we generalize the classical gradient estimate for the minimal surface equation to higher codimension. We consider a vector-valued function u : Omega subset of R-n --> R-m that satisfies the minimal surface system, see equation (1.1) in 1. The graph of u is then a minimal submanifold of Rn+m. We prove an a priori gradient bound under the assumption that the Jacobian of du : R-n --> R-m on any two dimensional subspace of R-n is less than or equal to one. This assumption is automatically satisfied when du is of rank one and thus the estimate covers the case when m = 1, i.e., the original minimal surface equation. This is applied to Bernstein type theorems for minimal submanifolds of higher codimension.
引用
收藏
页码:921 / 934
页数:14
相关论文
共 23 条
[1]   A PRIORI MAJORATION RELATING TO NON-PARAMETRICAL MINIMAL HYPERSURFACES [J].
BOMBIERI, E ;
DEGIORGI, E ;
MIRANDA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 32 (04) :255-&
[2]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569
[3]   ON EQUATIONS OF MINIMAL SURFACE TYPE [J].
FINN, R .
ANNALS OF MATHEMATICS, 1954, 60 (03) :397-416
[4]   SOME RIGIDITY THEOREMS FOR MINIMAL SUB-MANIFOLDS OF THE SPHERE [J].
FISCHERCOLBRIE, D .
ACTA MATHEMATICA, 1980, 145 (1-2) :29-46
[5]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, V224
[6]   COMPACTNESS AND GRADIENT BOUNDS FOR SOLUTIONS OF THE MEAN-CURVATURE SYSTEM IN 2 INDEPENDENT VARIABLES [J].
GREGORI, G .
JOURNAL OF GEOMETRIC ANALYSIS, 1994, 4 (03) :327-360
[7]  
Heinz E., 1957, J ANAL MATH, V5, P197
[8]   HARMONIC-MAPPINGS AND MINIMAL SUB-MANIFOLDS [J].
HILDEBRANDT, S ;
JOST, J ;
WIDMAN, KO .
INVENTIONES MATHEMATICAE, 1980, 62 (02) :269-298
[9]   Bernstein type theorems for higher codimension [J].
Jost, J ;
Xin, YL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (04) :277-296
[10]  
KOREVAAR N, 1986, P SYMP PURE MATH, V45, P81