CAR T-cell Therapy: A New Era in Cancer Immunotherapy

被引:317
作者
Androulla, Miliotou N. [1 ]
Lefkothea, Papadopoulou C. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Pharm, Lab Pharmacol, GR-54124 Thessaloniki, Macedonia, Greece
关键词
Cancer; immunotherapy; T-cell therapy; chimeric antigen receptor (CAR); genetic engineering; safety; CHIMERIC-ANTIGEN-RECEPTOR; ADOPTIVE IMMUNOTHERAPY; ANTITUMOR-ACTIVITY; CLINICAL-TRIAL; GENETIC-MODIFICATION; HODGKIN-LYMPHOMA; KILLER-CELLS; CD19; CAR; LYMPHOCYTES; TUMORS;
D O I
10.2174/1389201019666180418095526
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Cancer is one of the leading causes of death worldwide. Over the years, a number of conventional cytotoxic approaches for neoplastic diseases has been developed. However, due to their limited effectiveness in accordance with the heterogeneity of cancer cells, there is a constant search for therapeutic approaches with improved outcome, such as immunotherapy that utilizes and enhances the normal capacity of the patient's immune system. Methods: Chimeric Antigen Receptor (CAR) T-cell therapy involves genetic modification of patient's autologous T-cells to express a CAR specific for a tumor antigen, following by ex vivo cell expansion and re-infusion back to the patient. CARs are fusion proteins of a selected single-chain fragment variable from a specific monoclonal antibody and one or more T-cell receptor intracellular signaling domains. This T-cell genetic modification may occur either via viral-based gene transfer methods or nonviral methods, such as DNA-based transposons, CRISPR/Cas9 technology or direct transfer of in vitro transcribed-mRNA by electroporation. Results: Clinical trials have shown very promising results in end-stage patients with a full recovery of up to 92% in Acute Lymphocytic Leukemia. Despite such results in hematological cancers, the effective translation of CAR T-cell therapy to solid tumors and the corresponding clinical experience is limited due to therapeutic barriers, like CAR T-cell expansion, persistence, trafficking, and fate within tumors. Conclusion: In this review, the basic design of CARs, the main genetic modification strategies, the safety matters as well as the initial clinical experience with CAR T-cells are described.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 117 条
[41]   Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1 [J].
Hacein-Bey-Abina, Salima ;
Garrigue, Alexandrine ;
Wang, Gary P. ;
Soulier, Jean ;
Lim, Annick ;
Morillon, Estelle ;
Clappier, Emmanuelle ;
Caccavelli, Laure ;
Delabesse, Eric ;
Beldjord, Kheira ;
Asnafi, Vahid ;
Macintyre, Elizabeth ;
Dal Cortivo, Liliane ;
Radford, Isabelle ;
Brousse, Nicole ;
Sigaux, Francois ;
Moshous, Despina ;
Hauer, Julia ;
Borkhardt, Arndt ;
Belohradsky, Bernd H. ;
Wintergerst, Uwe ;
Velez, Maria C. ;
Leiva, Lily ;
Sorensen, Ricardo ;
Wulffraat, Nicolas ;
Blanche, Stephane ;
Bushman, Frederic D. ;
Fischer, Alain ;
Cavazzana-Calvo, Marina .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (09) :3132-3142
[42]   CAR-modified T-cell therapy for cancer: an updated review [J].
Haji-Fatahaliha, Mostafa ;
Hosseini, Maryam ;
Akbarian, Asiye ;
Sadreddini, Sanam ;
Jadidi-Niaragh, Farhad ;
Yousefi, Mehdi .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2016, 44 (06) :1339-1349
[43]   Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy [J].
Hay, Kevin A. ;
Hanafi, Laila-Aicha ;
Li, Daniel ;
Gust, Juliane ;
Liles, W. Conrad ;
Wurfel, Mark M. ;
Lopez, Jose A. ;
Chen, Junmei ;
Chung, Dominic ;
Harju-Baker, Susanna ;
Cherian, Sindhu ;
Chen, Xueyan ;
Riddell, Stanley R. ;
Maloney, David G. ;
Turtle, Cameron J. .
BLOOD, 2017, 130 (21) :2295-2306
[44]   Immunotherapy in hematologic malignancies: past, present, and future [J].
Im, Annie ;
Pavletic, Steven Z. .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2017, 10
[45]   Biomaterials for mRNA delivery [J].
Islam, Mohammad Ariful ;
Reesor, Emma K. G. ;
Xu, Yingjie ;
Zope, Harshal R. ;
Zetter, Bruce R. ;
Shi, Jinjun .
BIOMATERIALS SCIENCE, 2015, 3 (12) :1519-1533
[46]   The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor [J].
Jin, Z. ;
Maiti, S. ;
Huls, H. ;
Singh, H. ;
Olivares, S. ;
Mates, L. ;
Izsvak, Z. ;
Ivics, Z. ;
Lee, D. A. ;
Champlin, R. E. ;
Cooper, L. J. N. .
GENE THERAPY, 2011, 18 (09) :849-856
[47]   Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells [J].
John, Liza B. ;
Devaud, Christel ;
Duong, Connie P. M. ;
Yong, Carmen S. ;
Beavis, Paul A. ;
Haynes, Nicole M. ;
Chow, Melvyn T. ;
Smyth, Mark J. ;
Kershaw, Michael H. ;
Darcy, Phillip K. .
CLINICAL CANCER RESEARCH, 2013, 19 (20) :5636-5646
[48]   Driving gene-engineered T cell immunotherapy of cancer [J].
Johnson, Laura A. ;
June, Carl H. .
CELL RESEARCH, 2017, 27 (01) :38-58
[49]   Is autoimmunity the Achilles' heel of cancer immunotherapy? [J].
June, Carl H. ;
Warshauer, Jeremy T. ;
Bluestone, Jeffrey A. .
NATURE MEDICINE, 2017, 23 (05) :540-+
[50]   Positron Emission Tomography and Single-Photon Emission Computed Tomography Imaging in the Diagnosis of Cardiac Implantable Electronic Device Infection A Systematic Review and Meta-Analysis [J].
Juneau, Daniel ;
Golfam, Mohammad ;
Hazra, Samir ;
Zuckier, Lionel S. ;
Garas, Shady ;
Redpath, Calum ;
Bernick, Jordan ;
Leung, Eugene ;
Chih, Sharon ;
Wells, George ;
Beanlands, Rob S. B. ;
Chow, Benjamin J. W. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (04)