Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks

被引:144
作者
Maeda, Guilherme J. [1 ]
Neumann, Gerhard [1 ]
Ewerton, Marco [1 ]
Lioutikov, Rudolf [1 ]
Kroemer, Oliver [2 ]
Peters, Jan [1 ,3 ]
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
[2] Univ Southern Calif, Los Angeles, CA 90089 USA
[3] Max Planck Inst Intelligent Syst, Interdept Robot Learning Grp, Tubingen, Germany
关键词
Movement primitives; Physical human-robot interaction; Imitation learning; Mixture model; Action recognition; Trajectory generation; IMITATION; MODEL;
D O I
10.1007/s10514-016-9556-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human-robot movement coordination. It uses imitation learning to construct a mixture model of human-robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human observations. The method is scalable in relation to the number of tasks and can learn nonlinear correlations between the trajectories that describe the human-robot interaction. We evaluated the method experimentally with a lightweight robot arm in a variety of assistive scenarios, including the coordinated handover of a bottle to a human, and the collaborative assembly of a toolbox. Potential applications of the method are personal caregiver robots, control of intelligent prosthetic devices, and robot coworkers in factories.
引用
收藏
页码:593 / 612
页数:20
相关论文
共 36 条
[11]  
Ewerton M, 2015, IEEE INT C INT ROBOT, P456, DOI 10.1109/IROS.2015.7353412
[12]   Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors [J].
Ijspeert, Auke Jan ;
Nakanishi, Jun ;
Hoffmann, Heiko ;
Pastor, Peter ;
Schaal, Stefan .
NEURAL COMPUTATION, 2013, 25 (02) :328-373
[13]  
Kalakrishnan M., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P4569, DOI 10.1109/ICRA.2011.5980280
[14]   Interaction learning for dynamic movement primitives used in cooperative robotic tasks [J].
Kulvicius, Tomas ;
Biehl, Martin ;
Aein, Mohamad Javad ;
Tamosiunaite, Minija ;
Woergoetter, Florentin .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) :1450-1459
[15]  
Lawitzky M, 2012, IEEE INT C INT ROBOT, P3646, DOI 10.1109/IROS.2012.6386040
[16]   Mimetic Communication Model with Compliant Physical Contact in Human-Humanoid Interaction [J].
Lee, Dongheui ;
Ott, Christian ;
Nakamura, Yoshihiko .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (13) :1684-1704
[17]  
Lee S., 2015, INT S ROB RES ISRR
[18]  
Llorens-Bonilla B, 2014, IEEE INT CONF ROBOT, P119, DOI 10.1109/ICRA.2014.6906598
[19]  
Maeda G., 2015, P INT S ROB RES ISRR
[20]  
Maeda G, 2014, IEEE-RAS INT C HUMAN, P527, DOI 10.1109/HUMANOIDS.2014.7041413