Origins of genuine Ohmic van der Waals contact between indium and MoS2

被引:66
|
作者
Kim, Bum-Kyu [1 ]
Kim, Tae-Hyung [2 ]
Choi, Dong-Hwan [1 ,3 ]
Kim, Hanul [3 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Rho, Heesuk [3 ]
Kim, Ju-Jin [3 ]
Kim, Yong-Hoon [2 ]
Bae, Myung-Ho [1 ,6 ]
机构
[1] Korea Res Inst Stand & Sci, Daejeon 34113, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Jeonbuk Natl Univ, Res Inst Phys & Chem, Dept Phys, Jeonju 54896, South Korea
[4] Natl Inst Mat Sci, Funct Mat Res Ctr, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Univ Sci & Technol, Dept Nano Sci, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
METAL CONTACTS; ELECTRICAL CONTACTS; TRANSISTORS; MOBILITY; BN;
D O I
10.1038/s41699-020-00191-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The achievement of ultraclean Ohmic van der Waals (vdW) contacts at metal/transition-metal dichalcogenide (TMDC) interfaces would represent a critical step for the development of high-performance electronic and optoelectronic devices based on two-dimensional (2D) semiconductors. Herein, we report the fabrication of ultraclean vdW contacts between indium (In) and molybdenum disulfide (MoS2) and the clarification of the atomistic origins of its Ohmic-like transport properties. Atomically clean In/MoS2 vdW contacts are achieved by evaporating In with a relatively low thermal energy and subsequently cooling the substrate holder down to similar to 100K by liquid nitrogen. We reveal that the high-quality In/MoS2 vdW contacts are characterized by a small interfacial charge transfer and the Ohmic-like transport based on the field-emission mechanism over a wide temperature range from 2.4 to 300K. Accordingly, the contact resistance reaches similar to 600 Omega mu m and similar to 1000 Omega mu m at cryogenic temperatures for the few-layer and monolayer MoS2 cases, respectively. Density functional calculations show that the formation of large in-gap states due to the hybridization between In and MoS2 conduction band edge states is the microscopic origins of the Ohmic charge injection. We suggest that seeking a mechanism to generate strong density of in-gap states while maintaining the pristine contact geometry with marginal interfacial charge transfer could be a general strategy to simultaneously avoid Fermi-level pinning and minimize contact resistance for 2D vdW materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Metallic contact induced van der Waals gap in a MoS2 FET
    Kim, Changsik
    Lee, Kwang Young
    Moon, Inyong
    Issarapanacheewin, Sudarat
    Yoo, Won Jong
    NANOSCALE, 2019, 11 (39) : 18246 - 18254
  • [2] The van der Waals heterostructure of CuPc/MoS2(0001)
    Cao Ning-Tong
    Zhang Lei
    Lu Lu
    Xie Hai-Peng
    Huang Han
    Niu Dong-Mei
    Gao Yong-Li
    ACTA PHYSICA SINICA, 2014, 63 (16)
  • [3] Transition from Schottky to ohmic contacts in the C31 and MoS2 van der Waals heterostructure
    Xu, Lijun
    Zhan, Guohui
    Luo, Kun
    Lu, Fei
    Zhang, Shengli
    Wu, Zhenhua
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (29) : 20128 - 20133
  • [4] Multimodal Nonlinear Optical Imaging of MoS2 and MoS2-Based van der Waals Heterostructures
    Li, Dawei
    Xiong, Wei
    Jiang, Lijia
    Xiao, Zhiyong
    Golgir, Hossein Rabiee
    Wang, Mengmeng
    Huang, Xi
    Zhou, Yunshen
    Lin, Zhe
    Song, Jingfeng
    Ducharme, Stephen
    Jiang, Lan
    Silvain, Jean-Francois
    Lu, Yongfeng
    ACS NANO, 2016, 10 (03) : 3766 - 3775
  • [5] Epitaxial van der Waals contacts for low schottky barrier MoS2 field effect transistors
    Huawei Liu
    Lizhen Fang
    Xiaoli Zhu
    Chenguang Zhu
    Xingxia Sun
    Gengzhao Xu
    Biyuan Zheng
    Ying Liu
    Ziyu Luo
    Hui Wang
    Chengdong Yao
    Dong Li
    Anlian Pan
    Nano Research, 2023, 16 : 11832 - 11838
  • [6] Epitaxial van der Waals contacts for low schottky barrier MoS2 field effect transistors
    Liu, Huawei
    Fang, Lizhen
    Zhu, Xiaoli
    Zhu, Chenguang
    Sun, Xingxia
    Xu, Gengzhao
    Zheng, Biyuan
    Liu, Ying
    Luo, Ziyu
    Wang, Hui
    Yao, Chengdong
    Li, Dong
    Pan, Anlian
    NANO RESEARCH, 2023, 16 (09) : 11832 - 11838
  • [7] Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform
    Cui, Xu
    Lee, Gwan-Hyoung
    Kim, Young Duck
    Arefe, Ghidewon
    Huang, Pinshane Y.
    Lee, Chul-Ho
    Chenet, Daniel A.
    Zhang, Xian
    Wang, Lei
    Ye, Fan
    Pizzocchero, Filippo
    Jessen, Bjarke S.
    Watanabe, Kenji
    Taniguchi, Takashi
    Muller, David A.
    Low, Tony
    Kim, Philip
    Hone, James
    NATURE NANOTECHNOLOGY, 2015, 10 (06) : 534 - 540
  • [8] Controlled van der Waals Epitaxy of Mono layer MoS2 Triangular Domains on Graphene
    Ago, Hiroki
    Endo, Hiroko
    Solis-Fernandez, Pablo
    Takizawa, Rina
    Ohta, Yujiro
    Fujita, Yusuke
    Yamamoto, Kazuhiro
    Tsuji, Masaharu
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) : 5265 - 5273
  • [9] Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS2/hBN Vertical Heterostructures
    Okada, Mitsuhiro
    Maruyama, Mina
    Okada, Susumu
    Warner, Jamie H.
    Kureishi, Yusuke
    Uchiyama, Yosuke
    Taniguchi, Takashi
    Watanabe, Kenji
    Shimizu, Tetsuo
    Kubo, Toshitaka
    Ishihara, Masatou
    Shinohara, Hisanori
    Kitaura, Ryo
    ACS OMEGA, 2020, 5 (49): : 31692 - 31699
  • [10] Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2
    Xiao, Jin
    Long, Mengqiu
    Li, Xinmei
    Zhang, Qingtian
    Xu, Hui
    Chan, K. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (40)