Fast and slow decaying solutions for H1-supercritical quasilinear Schrodinger equations

被引:0
作者
Cheng, Yongkuan [1 ]
Wei, Juncheng [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SUPERCRITICAL ELLIPTIC PROBLEMS; POSITIVE RADIAL SOLUTIONS; SOLITON-SOLUTIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s00526-019-1594-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following quasilinear Schrodinger equations of the form u -eV(x) u + u u2 + u p = 0, u > 0 in RN and lim | x|.8 u(x) = 0, where N = 3, p > N+ 2 N-2, e > 0 and V(x) is a positive function. By imposing appropriate conditions on V(x), we prove that, for e = 1, the existence of infinity many positive solutions with slow decaying O(| x|-2 p-1) at infinity if p > N+ 2 N-2 and, for e sufficiently small, a positive solution with fast decaying O(| x| 2-N) if N+ 2 N-2 < p < 3N+ 2 N-2. The proofs are based on perturbative approach. To this aim, we also analyze the structure of positive solutions for the zero mass problem.
引用
收藏
页数:24
相关论文
共 33 条
[21]   Quasi linear elliptic equations with critical growth via perturbation method [J].
Liu, Xiang-Qing ;
Liu, Jia-Quan ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) :102-124
[22]   Ground states for quasilinear Schrodinger equations with critical growth [J].
Liu, Xiangqing ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :641-669
[23]   On the existence of standing wave solutions to quasilinear Schrodinger equations [J].
Moameni, A .
NONLINEARITY, 2006, 19 (04) :937-957
[24]   Existence of soliton solutions for a quasilinear Schrodinger equation involving critical exponent in RN [J].
Moameni, Abbas .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) :570-587
[25]  
Musso M, 2002, INDIANA U MATH J, V51, P541
[26]   On the existence of soliton solutions to quasilinear Schrodinger equations [J].
Poppenberg, M ;
Schmitt, K ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :329-344
[27]   A GENERAL VARIATIONAL IDENTITY [J].
PUCCI, P ;
SERRIN, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (03) :681-703
[28]   On a class of quasilinear Schrodinger equations with superlinear or asymptotically linear terms [J].
Severo, Uberlandio B. ;
Gloss, Elisandra ;
da Silva, Edcarlos D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3550-3580
[29]   A CLASS OF GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS [J].
Shen, Yaotian ;
Wang, Youjun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) :853-870
[30]   Soliton solutions for generalized quasilinear Schrodinger equations [J].
Shen, Yaotian ;
Wang, Youjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :194-201