Fast and slow decaying solutions for H1-supercritical quasilinear Schrodinger equations

被引:0
作者
Cheng, Yongkuan [1 ]
Wei, Juncheng [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SUPERCRITICAL ELLIPTIC PROBLEMS; POSITIVE RADIAL SOLUTIONS; SOLITON-SOLUTIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s00526-019-1594-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following quasilinear Schrodinger equations of the form u -eV(x) u + u u2 + u p = 0, u > 0 in RN and lim | x|.8 u(x) = 0, where N = 3, p > N+ 2 N-2, e > 0 and V(x) is a positive function. By imposing appropriate conditions on V(x), we prove that, for e = 1, the existence of infinity many positive solutions with slow decaying O(| x|-2 p-1) at infinity if p > N+ 2 N-2 and, for e sufficiently small, a positive solution with fast decaying O(| x| 2-N) if N+ 2 N-2 < p < 3N+ 2 N-2. The proofs are based on perturbative approach. To this aim, we also analyze the structure of positive solutions for the zero mass problem.
引用
收藏
页数:24
相关论文
共 33 条
[1]   Asymptotic uniqueness of ground states for a class of quasilinear Schrodinger equations with H1-supercritical exponent [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :3086-3118
[2]  
Adachi S, 2012, ADV NONLINEAR STUD, V12, P255
[3]  
[Anonymous], DISCRETE CONTIN DY A
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[6]   Spinning solitons of a modified nonlinear Schrodinger equation [J].
Brihaye, Y ;
Hartmann, B ;
Zakrzewski, WJ .
PHYSICAL REVIEW D, 2004, 69 (08) :4
[7]   Static solutions of a D-dimensional modified nonlinear Schrodinger equation [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 2003, 16 (04) :1481-1497
[8]   Electron self-trapping in a discrete two-dimensional lattice [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, W .
PHYSICA D, 2001, 159 (1-2) :71-90
[9]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[10]   Fast and slow decay solutions for supercritical elliptic problems in exterior domains [J].
Davila, Juan ;
del Pino, Manuel ;
Musso, Monica ;
Wei, Juncheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (04) :453-480