Therapeutic Genome Editing in Cardiovascular Diseases

被引:33
作者
German, David M. [1 ]
Mitalipov, Shoukhrat [1 ,2 ]
Mishra, Anusha [1 ]
Kaul, Sanjiv [1 ]
机构
[1] Oregon Hlth & Sci Univ, Knight Cardiovasc Inst, UHN 62,3181 Southwest Sam Jackson Pk Rd, Portland, OR 97239 USA
[2] Oregon Hlth & Sci Univ, Ctr Embryon Cell & Gene Therapy, Portland, OR 97239 USA
关键词
CRISPR; gene editing; germline gene correction; CLONAL HEMATOPOIESIS; PCSK9; BASE; DNA; CRISPR/CAS9; MUTATIONS; NUCLEASES; ANGPTL3; MICE; CAS9;
D O I
10.1016/j.jacbts.2018.11.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A variety of genetic cardiovascular diseases may one day be curable using gene editing technology. Germline genome editing and correction promises to permanently remove monogenic cardiovascular disorders from the offspring and subsequent generations of affected families. Although technically feasible and likely to be ready for implementation in humans in the near future, this approach remains ethically controversial. Although currently beset by several technical challenges, and not yet past small animal models, somatic genome editing may also be useful for a variety of cardiovascular disorders. It potentially avoids ethical concerns about permanent editing of the germline and allows treatment of already diseased individuals. if technical challenges of Cas9-gRNA delivery (viral vector immune response, nonviral vector delivery) can be worked out, then CRISPR-Cas9 may have a significant place in the treatment of a wide variety of disorders in which partial or complete gene knockout is desired. However, CRISPR may not work for gene correction in the human heart because of tow rates of homology directed repair. Off-target effects also remain a concern, although, thus far, small animal studies have been reassuring. Some of the therapies mentioned in this review may be ready for small clinical trials in the near future. (C) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
引用
收藏
页码:122 / 131
页数:10
相关论文
共 37 条
[1]   Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy [J].
Amoasii, Leonela ;
Hildyard, John C. W. ;
Li, Hui ;
Sanchez-Ortiz, Efrain ;
Mireault, Alex ;
Caballero, Daniel ;
Harron, Rachel ;
Stathopoulou, Thaleia-Rengina ;
Massey, Claire ;
Shelton, John M. ;
Bassel-Duby, Rhonda ;
Piercy, Richard J. ;
Olson, Eric N. .
SCIENCE, 2018, 362 (6410) :86-90
[2]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[3]   Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3 [J].
Chadwick, Alexandra C. ;
Evitt, Niklaus H. ;
Lv, Wenjian ;
Musunuru, Kiran .
CIRCULATION, 2018, 137 (09) :975-977
[4]   In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing [J].
Chadwick, Alexandra C. ;
Wang, Xiao ;
Musunuru, Kiran .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (09) :1741-+
[5]   Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles [J].
Christiansen, JP ;
French, BA ;
Klibanov, AL ;
Kaul, S ;
Lindner, JR .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (12) :1759-1767
[6]   Sequence variations in PCSK9, low LDL, and protection against coronary heart disease [J].
Cohen, JC ;
Boerwinkle, E ;
Mosley, TH ;
Hobbs, HH .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (12) :1264-1272
[7]   Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease [J].
Dewey, F. E. ;
Gusarova, V. ;
Dunbar, R. L. ;
O'Dushlaine, C. ;
Schurmann, C. ;
Gottesman, O. ;
McCarthy, S. ;
Van Hout, C. V. ;
Bruse, S. ;
Dansky, H. M. ;
Leader, J. B. ;
Murray, M. F. ;
Ritchie, M. D. ;
Kirchner, H. L. ;
Habegger, L. ;
Lopez, A. ;
Penn, J. ;
Zhao, A. ;
Shao, W. ;
Stahl, N. ;
Murphy, A. J. ;
Hamon, S. ;
Bouzelmat, A. ;
Zhang, R. ;
Shumel, B. ;
Pordy, R. ;
Gipe, D. ;
Herman, G. A. ;
Sheu, W. H. H. ;
Lee, I-T. ;
Liang, K. -W. ;
Guo, X. ;
Rotter, J. I. ;
Chen, Y. -D. I. ;
Kraus, W. E. ;
Shah, S. H. ;
Damrauer, S. ;
Small, A. ;
Rader, D. J. ;
Wulff, A. B. ;
Nordestgaard, B. G. ;
Tybjaerg-Hansen, A. ;
van den Hoek, A. M. ;
Princen, H. M. G. ;
Ledbetter, D. H. ;
Carey, D. J. ;
Overton, J. D. ;
Reid, J. G. ;
Sasiela, W. J. ;
Banerjee, P. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (03) :211-221
[8]   Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing [J].
Ding, Qiurong ;
Strong, Alanna ;
Patel, Kevin M. ;
Ng, Sze-Ling ;
Gosis, Bridget S. ;
Regan, Stephanie N. ;
Cowan, Chad A. ;
Rader, Daniel J. ;
Musunuru, Kiran .
CIRCULATION RESEARCH, 2014, 115 (05) :488-+
[9]   In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice [J].
El Refaey, Mona ;
Xu, Li ;
Gao, Yandi ;
Canan, Benjamin D. ;
Adesanya, T. M. Ayodele ;
Warner, Sarah C. ;
Akagi, Keiko ;
Symer, David E. ;
Mohler, Peter J. ;
Ma, Jianjie ;
Janssen, Paul M. L. ;
Han, Renzhi .
CIRCULATION RESEARCH, 2017, 121 (08) :923-+
[10]   A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing [J].
Finn, Jonathan D. ;
Smith, Amy Rhoden ;
Patel, Mihir C. ;
Shaw, Lucinda ;
Youniss, Madeleine R. ;
van Heteren, Jane ;
Dirstine, Tanner ;
Ciullo, Corey ;
Lescarbeau, Reynald ;
Seitzer, Jessica ;
Shah, Ruchi R. ;
Shah, Aalok ;
Ling, Dandan ;
Growe, Jacqueline ;
Pink, Melissa ;
Rohde, Ellen ;
Wood, Kristy M. ;
Salomon, William E. ;
Harrington, William F. ;
Dombrowski, Christian ;
Strapps, Walter R. ;
Chang, Yong ;
Morrissey, David V. .
CELL REPORTS, 2018, 22 (09) :2227-2235