Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing

被引:38
作者
Gomez, Natalya [1 ]
Weber, Michael E. [2 ]
Clark, Peter U. [3 ,4 ]
Mitrovica, Jerry X. [5 ]
Han, Holly K. [1 ]
机构
[1] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ, Canada
[2] Univ Bonn, Inst Geosci, Dept Geochem & Petrol, Bonn, Germany
[3] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[4] Univ Ulster, Sch Geog & Environm Sci, Coleraine, Londonderry, North Ireland
[5] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会;
关键词
MELTWATER PULSE 1B; GLACIAL ISOSTATIC-ADJUSTMENT; CHRONOLOGY AICC2012; SHEET; MODEL; DEGLACIATION; SURFACE; EARTH; TIMESCALES; GREENLAND;
D O I
10.1038/s41586-020-2916-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sea-level rise due to ice loss in the Northern Hemisphere in response to insolation and greenhouse gas forcing is thought to have caused grounding-line retreat of marine-based sectors of the Antarctic Ice Sheet (AIS)(1-3.) Such interhemispheric sea-level forcing may explain the synchronous evolution of global ice sheets over ice-age cycles. Recent studies that indicate that the AIS experienced substantial millennial-scale variability during and after the last deglaciation(4-7) (roughly 20,000 to 9,000 years ago) provide further evidence of this sea-level forcing. However, global sea-level change as a result of mass loss from ice sheets is strongly nonuniform, owing to gravitational, deformational and Earth rotational effects(8), suggesting that the response of AIS grounding lines to Northern Hemisphere sea-level forcing is more complicated than previously modelled(1,2,6). Here, using an ice-sheet model coupled to a global sea-level model, we show that AIS dynamics are amplified by Northern Hemisphere sea-level forcing. As a result of this interhemispheric interaction, a large or rapid Northern Hemisphere sea-level forcing enhances grounding-line advance and associated mass gain of the AIS during glaciation, and grounding-line retreat and mass loss during deglaciation. Relative to models without these interactions, the inclusion of Northern Hemisphere sea-level forcing in our model increases the volume of the AIS during the Last Glacial Maximum (about 26,000 to 20,000 years ago), triggers an earlier retreat of the grounding line and leads to millennial-scale variability throughout the last deglaciation. These findings are consistent with geologic reconstructions of the extent of the AIS during the Last Glacial Maximum and subsequent ice-sheet retreat, and with relative sea-level change in Antarctica(3-7,9,10).
引用
收藏
页码:600 / +
页数:18
相关论文
共 61 条
[1]   Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata [J].
Abdul, N. A. ;
Mortlock, R. A. ;
Wright, J. D. ;
Fairbanks, R. G. .
PALEOCEANOGRAPHY, 2016, 31 (02) :330-344
[2]   GROWTH-RATE OF LAURENTIDE ICE SHEET AND SEA-LEVEL LOWERING (WITH EMPHASIS ON 115,000 BP SEA-LEVEL LOW) [J].
ANDREWS, JT ;
MAHAFFY, MAW .
QUATERNARY RESEARCH, 1976, 6 (02) :167-183
[3]   Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge [J].
Bakker, Pepijn ;
Clark, Peter U. ;
Golledge, Nicholas R. ;
Schmittner, Andreas ;
Weber, Michael E. .
NATURE, 2017, 541 (7635) :72-+
[4]   Comment on "Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reefal crest coral Acropora palmata" by N. A. Abdul et al [J].
Bard, Edouard ;
Hamelin, Bruno ;
Deschamps, Pierre ;
Camoin, Gilbert .
PALEOCEANOGRAPHY, 2016, 31 (12) :1603-1608
[5]   Deglacial Meltwater Pulse 1B and Younger Dryas Sea Levels Revisited with Boreholes at Tahiti [J].
Bard, Edouard ;
Hamelin, Bruno ;
Delanghe-Sabatier, Doriane .
SCIENCE, 2010, 327 (5970) :1235-1237
[6]   A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica [J].
Bart, Philip J. ;
DeCesare, Matthew ;
Rosenheim, Brad E. ;
Majewski, Wojceich ;
McGlannan, Austin .
SCIENTIFIC REPORTS, 2018, 8
[7]   An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka [J].
Bazin, L. ;
Landais, A. ;
Lemieux-Dudon, B. ;
Kele, H. Toye Mahamadou ;
Veres, D. ;
Parrenin, F. ;
Martinerie, P. ;
Ritz, C. ;
Capron, E. ;
Lipenkov, V. ;
Loutre, M. -F. ;
Raynaud, D. ;
Vinther, B. ;
Svensson, A. ;
Rasmussen, S. O. ;
Severi, M. ;
Blunier, T. ;
Leuenberger, M. ;
Fischer, H. ;
Masson-Delmotte, V. ;
Chappellaz, J. ;
Wolff, E. .
CLIMATE OF THE PAST, 2013, 9 (04) :1715-1731
[8]   How to evaluate model-derived deglaciation chronologies: a case study using Antarctica [J].
Briggs, Robert D. ;
Tarasov, Lev .
QUATERNARY SCIENCE REVIEWS, 2013, 63 :109-127
[9]   Oceanic forcing of penultimate deglacial and last interglacial sea-level rise [J].
Clark, Peter U. ;
He, Feng ;
Golledge, Nicholas R. ;
Mitrovica, Jerry X. ;
Dutton, Andrea ;
Hoffman, Jeremy S. ;
Dendy, Sarah .
NATURE, 2020, 577 (7792) :660-+
[10]   The Last Glacial Maximum [J].
Clark, Peter U. ;
Dyke, Arthur S. ;
Shakun, Jeremy D. ;
Carlson, Anders E. ;
Clark, Jorie ;
Wohlfarth, Barbara ;
Mitrovica, Jerry X. ;
Hostetler, Steven W. ;
McCabe, A. Marshall .
SCIENCE, 2009, 325 (5941) :710-714