Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector

被引:29
作者
Stamm, Chelsea E. [1 ,2 ]
Pasko, Breanna L. [1 ,2 ]
Chaisavaneeyakorn, Sujittra [1 ,3 ]
Franco, Luis H. [1 ,4 ,5 ]
Nair, Vidhya R. [1 ]
Weigele, Bethany A. [2 ,6 ]
Alto, Neal M. [2 ]
Shiloh, Michael U. [1 ,2 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Microbiol, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Pediat, Dallas, TX USA
[4] Univ Texas Southwestern Med Ctr Dallas, Ctr Autophagy Res, Dallas, TX 75390 USA
[5] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
[6] Arizona State Univ, Scottsdale, AZ USA
关键词
Mycobacterium tuberculosis; effector functions; pathogenesis; COMPARATIVE PROTEOME ANALYSIS; LEGIONELLA-PNEUMOPHILA; PHAGOSOME MATURATION; PATHOGENIC MYCOBACTERIA; ENDOPLASMIC-RETICULUM; GEL-ELECTROPHORESIS; CALMETTE-GUERIN; HOST MEMBRANES; VII SECRETION; ANTIGEN MPT64;
D O I
10.1128/mSphere.00354-19
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the most successful human pathogens. One reason for its success is that Mtb can reside within host macrophages, a cell type that normally functions to phagocytose and destroy infectious bacteria. However, Mtb is able to evade macrophage defenses in order to survive for prolonged periods of time. Many intracellular pathogens secrete virulence factors targeting host membranes and organelles to remodel their intracellular environmental niche. We hypothesized that Mtb secreted proteins that target host membranes are vital for Mtb to adapt to and manipulate the host environment for survival. Thus, we characterized 200 secreted proteins from Mtb for their ability to associate with eukaiyotic membranes using a unique temperature-sensitive yeast screen and to manipulate host trafficking pathways using a modified inducible secretion screen. We identified five Mtb secreted proteins that both associated with eukaiyotic membranes and altered the host secretory pathway. One of these secreted proteins, Mpt64, localized to the endoplasmic reticulum during Mtb infection of murine and human macrophages and impaired the unfolded protein response in macrophages. These data highlight the importance of secreted proteins in Mtb pathogenesis and provide a basis for further investigation into their molecular mechanisms. IMPORTANCE Advances have been made to identify secreted proteins of Mycobacterium tuberculosis during animal infections. These data, combined with transposon screens identifying genes important for M. tuberculosis virulence, have generated a vast resource of potential M. tuberculosis virulence proteins. However, the function of many of these proteins in M. tuberculosis pathogenesis remains elusive. We have integrated three cell biological screens to characterize nearly 200 M. tuberculosis secreted proteins for eukaryotic membrane binding, host subcellular localization, and interactions with host vesicular trafficking. In addition, we observed the localization of one secreted protein, Mpt64, to the endoplasmic reticulum (ER) during M. tuberculosis infection of macrophages. Interestingly, although Mpt64 is exported by the Sec pathway, its delivery into host cells was dependent upon the action of the type VII secretion system. Finally, we observed that Mpt64 impairs the ER-mediated unfolded protein response in macrophages.
引用
收藏
页数:26
相关论文
共 152 条
[1]   Type VII secretion - mycobacteria show the way [J].
Abdallah, M. Abdallah ;
Gey Van Pittius, Nicolaas C. ;
Champion, Patricia A. DiGiuseppe ;
Cox, Jeffery ;
Luirink, Joen ;
Vandenbroucke-Grauls, Christina M. J. E. ;
Appelmelk, Ben J. ;
Bitter, Wilbert .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (11) :883-891
[2]   Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV [J].
Akil, Abdellah ;
Peng, Juan ;
Omrane, Mohyeddine ;
Gondeau, Claire ;
Desterke, Christophe ;
Marin, Mickael ;
Tronchere, Helene ;
Taveneau, Cyntia ;
Sar, Sokhavuth ;
Briolotti, Philippe ;
Benjelloun, Soumaya ;
Benjouad, Abdelaziz ;
Maurel, Patrick ;
Thiers, Valerie ;
Bressanelli, Stphane ;
Samuel, Didier ;
Brechot, Christian ;
Gassama-Diagne, Ama .
NATURE COMMUNICATIONS, 2016, 7
[3]   Host-pathogen interactions Subversion of membrane transport pathways by vacuolar pathogens [J].
Alix, Eric ;
Mukherjee, Shaeri ;
Roy, Craig R. .
JOURNAL OF CELL BIOLOGY, 2011, 195 (06) :943-952
[4]   Subversion of Cell Signaling by Pathogens [J].
Alto, Neal M. ;
Orth, Kim .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (09)
[5]   Biological Diversity of Prokaryotic Type IV Secretion Systems [J].
Alvarez-Martinez, Cristina E. ;
Christie, Peter J. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2009, 73 (04) :775-808
[6]  
[Anonymous], 2011, Guide for the Care and Use of Laboratory Animals, V8th, P77
[7]   Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions [J].
Aronheim, A ;
Zandi, E ;
Hennemann, H ;
Elledge, SJ ;
Karin, M .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (06) :3094-3102
[8]   Utility of MPT64 Antigen Detection for Rapid Confirmation of Mycobacterium tuberculosis Complex [J].
Arora, Jyoti ;
Kumar, Gavish ;
Verma, Ajoy Kumar ;
Bhalla, Manpreet ;
Sarin, Rohit ;
Myneedu, Vithal Prasad .
JOURNAL OF GLOBAL INFECTIOUS DISEASES, 2015, 7 (02) :66-69
[9]   The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10 [J].
Ates, Louis S. ;
van der Woude, Aniek D. ;
Bestebroer, Jovanka ;
van Stempvoort, Gunny ;
Musters, Rene J. P. ;
Garcia-Vallejo, Juan J. ;
Picavet, Daisy I. ;
van de Weerd, Robert ;
Maletta, Massimiliano ;
Kuijl, Coenraad P. ;
van der Wel, Nicole N. ;
Bitter, Wilbert .
PLOS PATHOGENS, 2016, 12 (06)
[10]   Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum [J].
Axe, Elizabeth L. ;
Walker, Simon A. ;
Manifava, Maria ;
Chandra, Priya ;
Roderick, H. Llewelyn ;
Habermann, Anja ;
Griffiths, Gareth ;
Ktistakis, Nicholas T. .
JOURNAL OF CELL BIOLOGY, 2008, 182 (04) :685-701