Extremal non-compactness of composition operators with linear fractional symbol

被引:11
作者
Basor, Estelle L. [1 ]
Retsek, Dylan Q. [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
基金
美国国家科学基金会;
关键词
composition operators; extremal non-compactness; cohyponormality;
D O I
10.1016/j.jmaa.2005.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We realize the norms of certain composition operators C phi with linear fractional symbol acting on the Hardy space in terms of the roots of associated hypergeometric functions. This realization leads to simple necessary and sufficient conditions on phi for C phi to exhibit extremal non-compactness, establishes equivalence of cohyponormality and cosubnormality of composition operators with linear fractional symbol, and yields a complete classification of those linear fractional phi that induce composition operators whose norms are determined by the action of the adjoint C phi* on the normalized reproducing kemels in H-2. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:749 / 763
页数:15
相关论文
共 15 条
[1]  
ANDREWS GE, 1999, SPECIAL FUNCTIONS
[2]  
[Anonymous], 1996, EXP MATH
[3]   Norms of linear-fractional composition operators [J].
Bourdon, PS ;
Fry, EE ;
Hammond, C ;
Spofford, CH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2459-2480
[4]  
BOURDON PS, 2001, ACTA SCI MATH SZEGE, V67, P555
[5]   SUBNORMALITY AND COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC ;
KRIETE, TL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 81 (02) :298-319
[6]   LINEAR FRACTIONAL COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (02) :151-160
[7]  
COWEN CC, 1995, COMPOSITION OPERATOR
[8]  
Dennis K. W., 2002, ACTA SCI MATH SZEGED, V68, P401
[9]   On inequalities in the theory of functions [J].
Littlewood, JE .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 :481-519
[10]  
MacCluer, 1998, CONT MATH, V213, P17, DOI 10.1090/conm/213/02846