A comparative review on sleep stage classification methods in patients and healthy individuals

被引:216
作者
Boostani, Reza [1 ]
Karimzadeh, Foroozan [1 ]
Nami, Mohammad [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Comp Sci & Informat technol, Shiraz, Iran
[2] Shiraz Univ Med Sci, Sch Adv Med Sci & Technol, Dept Neurosci, Shiraz, Iran
关键词
Sleep stage classification; Wavelet transform; Random forest classifier; Entropy; ARTIFICIAL NEURAL-NETWORK; FEATURE-SELECTION; OPTIMAL COMBINATION; AUTOMATED DETECTION; EEG SIGNALS; CHANNEL; SYSTEM; POLYSOMNOGRAPHY; RECHTSCHAFFEN; AASM;
D O I
10.1016/j.cmpb.2016.12.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Proper scoring of sleep stages can give clinical information on diagnosing patients with sleep disorders. Since traditional visual scoring of the entire sleep is highly time-consuming and dependent to experts' experience, automatic schemes based on electroencephalogram (EEG) analysis are broadly developed to solve these problems. This review presents an overview on the most suitable methods in terms of preprocessing, feature extraction, feature selection and classifier adopted to precisely discriminate the sleep stages. Methods: This study round up a wide range of research findings concerning the application of the sleep stage classification. The fundamental qualitative methods along with the state-of-the-art quantitative techniques for sleep stage scoring are comprehensively introduced. Moreover, according to the results of the investigated studies, five research papers are chosen and practically implemented on a well-known public available sleep EEG dataset. They are applied to single-channel EEG of 40 subjects containing equal number of healthy and patient individuals. Feature extraction and classification schemes are assessed in terms of accuracy and robustness against noise. Furthermore, an additional implementation phase is added to this research in which all combinations of the implemented features and classifiers are considered to find the best combination for sleep analysis. Results: According to our achieved results on both groups, entropy of wavelet coefficients along with random forest classifier are chosen as the best feature and classifier, respectively. The mentioned feature and classifier provide 87.06% accuracy on healthy subjects and 69.05% on patient group. Conclusions: In this paper, the road map of EEG-base sleep stage scoring methods is clearly sketched. Implementing the state-of-the-art methods and even their combination on both healthy and patient datasets indicates that although the accuracy on healthy subjects are remarkable, the results for the main community (patient group) by the quantitative methods are not promising yet. The reasons rise from adopting non-matched sleep EEG features from other signal processing fields such as communication. As a conclusion, developing sleep pattern-related features deem necessary to enhance the performance of this process. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 95 条
[1]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[2]   ANALYSIS AND AUTOMATIC IDENTIFICATION OF SLEEP STAGES USING HIGHER ORDER SPECTRA [J].
Acharya U, Rajendra ;
Chua, Eric Chern-Pin ;
Chua, Kuang Chua ;
Min, Lim Choo ;
Tamura, Toshiyo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (06) :509-521
[3]   Computer-assisted sleep staging [J].
Agarwal, R ;
Gotman, J .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (12) :1412-1423
[4]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[5]  
Al-Jumeily D., 2015, SCI WORLD J, V2015
[6]  
[Anonymous], 1990, Introduction to statistical pattern recognition
[7]   Automatic classification of sleep stages based on the time-frequency image of EEG signals [J].
Bajaj, Varun ;
Pachori, Ram Bilas .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :320-328
[8]  
Berkhin P, 2006, GROUPING MULTIDIMENSIONAL DATA: RECENT ADVANCES IN CLUSTERING, P25
[9]   Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events [J].
Berry, Richard B. ;
Budhiraja, Rohit ;
Gottlieb, Daniel J. ;
Gozal, David ;
Iber, Conrad ;
Kapur, Vishesh K. ;
Marcus, Carole L. ;
Mehra, Reena ;
Parthasarathy, Sairam ;
Quan, Stuart F. ;
Redline, Susan ;
Strohl, Kingman P. ;
Ward, Sally L. Davidson ;
Tangredi, Michelle M. .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2012, 8 (05) :597-619
[10]   Automatic analysis of single-channel sleep EEG:: Validation in healthy individuals [J].
Berthomier, Christian ;
Drouot, Xavier ;
Herman-Stoieca, Maria ;
Berthomier, Pierre ;
Prado, Jacques ;
Bokar-Thire, Djibril ;
Benoit, Odile ;
Mattout, Jeremie ;
d'Ortho, Marie-Pia .
SLEEP, 2007, 30 (11) :1587-1595