Trace operator and a nonlinear boundary value problem in a new space

被引:2
作者
Pak, Hee Chul [1 ]
Park, Young Ja [2 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, Chungnam, South Korea
[2] Hoseo Univ, Dept Math, Asan 336795, Chungnam, South Korea
来源
BOUNDARY VALUE PROBLEMS | 2014年
关键词
trace operator; boundary value problem; function space; non-existence;
D O I
10.1186/s13661-014-0153-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new function space and discuss trace operator on the same genealogical spaces. We also prove that the nonlinear boundary value problem with Dirichlet condition: -Delta u = f (vertical bar u vertical bar) sgn u in the given domain, u = 0 on the boundary, possesses only a trivial solution if f obeys the slope condition: alpha' (x) > 2n/n-2 alpha(x)/x, where alpha is the anti-derivative of f with alpha(0) = 0.
引用
收藏
页数:13
相关论文
共 50 条
[21]   On the boundary-value problem for a class of operator-differential equations of third order [J].
A. M. Mamedov .
Mathematical Notes, 2010, 87 :590-593
[22]   On the boundary-value problem for a class of operator-differential equations of third order [J].
Mamedov, A. M. .
MATHEMATICAL NOTES, 2010, 87 (3-4) :590-593
[23]   Multiplicity results for nonlinear mixed boundary value problem [J].
Giuseppina D’Aguì .
Boundary Value Problems, 2012
[24]   Solution of the boundary value problem for nonlinear flows and maps [J].
Beri, S ;
Luchinsky, DG ;
Silchenko, A ;
McClintock, PVE .
NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS, 2003, 5114 :372-382
[25]   Multiplicity results for nonlinear mixed boundary value problem [J].
D'Agui, Giuseppina .
BOUNDARY VALUE PROBLEMS, 2012, :1-12
[27]   A CLASS OF SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEM [J].
Mo Jiaqi Lin WantaoHuzhou Teachers College .
AppliedMathematics:AJournalofChineseUniversities, 2005, (02) :159-164
[28]   Boundary value problem for a singularly perturbed nonlinear system [J].
Weizhang H. .
Applied Mathematics and Mechanics, 1997, 18 (6) :575-584
[29]   A class of singularly perturbed nonlinear boundary value problem [J].
Jiaqi M. ;
Wantao L. .
Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (2) :159-164
[30]   Boundary value problem for a singularly perturbed nonlinear system [J].
Huang, WZ .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (06) :575-584