An Optimal Feature Extraction Technique for Illuminant, Rotation Variant Images

被引:0
作者
Veni, S. H. Krishna [1 ]
Shunmuganathan, K. L. [2 ]
Suresh, L. Padma [1 ]
机构
[1] Noorul Islam Ctr Higher Educ Kumaracoil, Kanyakumari, Tamil Nadu, India
[2] RMK Engn Coll, Kavaraipettai, Tamil Nadu, India
来源
PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013) | 2013年
关键词
illuminant invariant; rotation invariant; Non subsamped contourlet; feature extraction; feature subset; Ant colony optimization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Extracting the features from images of various illuminations and rotations is a complex task. To overcome that, a novel image enhancement technique for extracting the optimal illuminant, rotation invariant features is proposed. Initially, preprocessing is performed by logarithmic tranformation function which changes multiplicative illumination model in to additive one. Then NSCT based illuminant invariant feature extraction is applied. Inorder to reduce the size of the feature vector and to extract the useful information, a strong edge detector will be needed. Hence for feature selection, Ant colony Optimization algorithm is used. While applying this algorithm to the yaleB database, experimental results show that this algorithm yields the best subset of features. Also this integrated approach provides a better solution for complex illumination problems.
引用
收藏
页码:1278 / 1283
页数:6
相关论文
共 11 条
[1]  
Asha A.A., 2011, INT J COMPUTER SCI E, V3, P714
[2]   Illumination invariant extraction for face recognition using neighboring wavelet coefficients [J].
Cao, X. ;
Shen, W. ;
Yu, L. G. ;
Wang, Y. L. ;
Yang, J. Y. ;
Zhang, Z. W. .
PATTERN RECOGNITION, 2012, 45 (04) :1299-1305
[3]  
Chen Bolun, 2012, SIG PROCESS, P1
[4]   Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain [J].
Cheng, Yong ;
Hou, Yingkun ;
Zhao, Chunxia ;
Li, Zuoyong ;
Hu, Yong ;
Wang, Cailing .
NEUROCOMPUTING, 2010, 73 (10-12) :2217-2224
[5]   Illuminant and device invariant colour using histogram equalisation [J].
Finlayson, G ;
Hordley, S ;
Schaefer, G ;
Tian, GY .
PATTERN RECOGNITION, 2005, 38 (02) :179-190
[6]  
Han Hu, 2012, PATTERN RECOGN, P1691
[7]   Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition [J].
Kao, Wen-Chung ;
Hsu, Ming-Chai ;
Yang, Yueh-Yiing .
PATTERN RECOGNITION, 2010, 43 (05) :1736-1747
[8]   Illumination invariant face recognition [J].
Liu, DH ;
Lam, KM ;
Shen, LS .
PATTERN RECOGNITION, 2005, 38 (10) :1705-1716
[9]   Edge detection improvement by ant colony optimization [J].
Lu, De-Sian ;
Chen, Chien-Chang .
PATTERN RECOGNITION LETTERS, 2008, 29 (04) :416-425
[10]   Retinex method based on adaptive smoothing for illumination invariant face recognition [J].
Park, Young Kyung ;
Park, Seok Lai ;
Kim, Joong Kyu .
SIGNAL PROCESSING, 2008, 88 (08) :1929-1945