Regularity for the fractional Gelfand problem up to dimension 7

被引:15
作者
Ros-Oton, Xavier [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
关键词
Fractional Laplacian; Gelfand problem; Extremal solution; EXTREMAL SOLUTIONS; STABLE-SOLUTIONS; MINIMIZERS;
D O I
10.1016/j.jmaa.2014.04.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem (-Delta)(s)u = lambda e(u) in a bounded domain Omega subset of R-n, where lambda is a positive parameter. More precisely, we study the regularity of the extremal solution to this problem. Our main result yields the boundedness of the extremal solution in dimensions n <= 7 for all s is an element of (0,1) whenever Omega is, for every i = 1, ... , n, convex in the x(i)-direction and symmetric with respect to {x(i) = 0}. The same holds if n = 8 and s greater than or similar to 0.28206 ... , or if n = 9 and s greater than or similar to 0.63237... These results are new even in the unit ball Omega = B-1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[2]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI DOI 10.1007/BF01244896
[3]  
BREZIS H, 1996, P S PURE MATH, V65, P1
[4]  
Cabré X, 2008, DISCRETE CONT DYN-A, V20, P425
[5]   Regularity of radial minimizers and extremal solutions of semilinear elliptic equations [J].
Cabre, Xavier ;
Capella, Antonio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :709-733
[6]   Regularity of Stable Solutions up to Dimension 7 in Domains of Double Revolution [J].
Cabre, Xavier ;
Ros-Oton, Xavier .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (01) :135-154
[7]   Regularity of Minimizers of Semilinear Elliptic Problems Up to Dimension 4 [J].
Cabre, Xavier .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (10) :1362-1380
[8]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[9]   SOME CONTINUATION AND VARIATIONAL METHODS FOR POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :207-218
[10]  
Davila J., 2013, PREPRINT