Nonperturbative renormalization-group study of reaction-diffusion processes -: art. no. 195703

被引:87
作者
Canet, L
Delamotte, B
Deloubrière, O
Wschebor, N
机构
[1] Univ Paris 06, Phys Theor & Hautes Energies Lab, F-75251 Paris 05, France
[2] Univ Paris 07, Phys Theor & Hautes Energies Lab, F-75251 Paris, France
[3] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
[4] Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
关键词
D O I
10.1103/PhysRevLett.92.195703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize nonperturbative renormalization group methods to nonequilibrium critical phenomena. Within this formalism, reaction-diffusion processes are described by a scale-dependent effective action, the flow of which is derived. We investigate branching and annihilating random walks with an odd number of offspring. Along with recovering their universal physics ( described by the directed percolation universality class), we determine their phase diagrams and predict that a transition occurs even in three dimensions, contrarily to what perturbation theory suggests.
引用
收藏
页码:195703 / 1
页数:4
相关论文
共 23 条
[1]   CRITICAL-BEHAVIOR OF AN AUTOCATALYTIC REACTION MODEL [J].
AUKRUST, T ;
BROWNE, DA ;
WEBMAN, I .
PHYSICAL REVIEW A, 1990, 41 (10) :5294-5301
[2]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[3]   Optimization of the derivative expansion in the nonperturbative renormalization group [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW D, 2003, 67 (06)
[4]  
Canet L., UNPUB
[5]   Theory of branching and annihilating random walks [J].
Cardy, J ;
Tauber, UC .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4780-4783
[6]   Field theory of branching and annihilating random walks [J].
Cardy, JL ;
Tauber, UC .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) :1-56
[7]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1479, DOI 10.1088/0305-4470/9/9/009
[8]   FLOW EQUATIONS FOR N-POINT FUNCTIONS AND BOUND-STATES [J].
ELLWANGER, U .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 62 (03) :503-510
[9]   REGGEON FIELD-THEORY AND MARKOV-PROCESSES [J].
GRASSBERGER, P ;
SUNDERMEYER, K .
PHYSICS LETTERS B, 1978, 77 (02) :220-222
[10]   CONTACT INTERACTIONS ON A LATTICE [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1974, 2 (06) :969-988