Comparison of Nanorod-Structured Li[Ni0.54Co0.16Mn0.30]O2 with Conventional Cathode Materials for Li-Ion Batteries

被引:41
作者
Noh, Hyung-Joo [1 ]
Ju, Jin Wook [1 ]
Sun, Yang-Kook [1 ,2 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[2] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
cathode materials; electrochemistry; full concentration gradient; lithium; nanostructures; SAFE LITHIUM BATTERIES; ELECTROCHEMICAL PROPERTIES; HIGH-ENERGY; COPRECIPITATION; PERFORMANCE; IMPROVEMENT; CELLS;
D O I
10.1002/cssc.201300379
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We successfully synthesized a safe, high-capacity cathode material specifically engineered for EV applications with a full concentration gradient (FCG) of Ni and Co ions at a fixed Mn content throughout the particles. The electrochemical and thermal properties of the FCG Li[Ni0.54Co0.16Mn0.30]O-2 were evaluated and compared to those of conventional Li[Ni0.5Co0.2Mn0.3]O-2 and Li[Ni1/3Co1/3Mn1/3]O-2 materials. It was found that the FCG Li[Ni0.54Co0.16Mn0.30]O-2 demonstrated a higher discharge capacity and a superior lithium intercalation stability compared to Li[Ni0.5Co0.2Mn0.3]O-2 and Li[Ni1/3Co1/3Mn1/3]O-2 over all of the tested voltage ranges. The results of electrochemical impedance spectroscopy and transition-metal dissolution demonstrate that the microstructure of primary particle with rod-shaped morphology plays an important role in reducing metal dissolution, which thereby decreases the charge transfer resistance as a result of stabilization of the host structure.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 22 条
[1]   Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J].
Belharouak, I ;
Sun, YK ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :247-252
[2]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[3]   Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (23) :4484-4493
[4]   Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils [J].
Jang, DH ;
Shin, YJ ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (07) :2204-2211
[5]   Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation [J].
Kim, Myung-Hyoon ;
Shin, Ho-Suk ;
Shin, Dongwook ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1328-1333
[6]   Structural and electrochemical properties of layered Li[Ni1-2xCoxMnx]O2 (x=0.1-0.3) positive electrode materials for Li-ion batteries [J].
Lee, K.-S. ;
Myung, S.-T. ;
Amine, K. ;
Yashiro, H. ;
Sun, Y.-K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A971-A977
[7]   Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation [J].
Lee, MH ;
Kang, Y ;
Myung, ST ;
Sun, YK .
ELECTROCHIMICA ACTA, 2004, 50 (04) :939-948
[8]   Synthesis and characterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ion batteries [J].
Li, Jiangang ;
Wang, Li ;
Zhang, Qian ;
He, Xiangming .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :28-33
[9]   Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 composite cathode material for Li-ion cells [J].
Mijung, N ;
Lee, Y ;
Cho, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (05) :A935-A940
[10]   Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries [J].
Myung, Seung-Taek ;
Hosoya, Kiyoharu ;
Komaba, Shinichi ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Kumagai, Naoaki .
ELECTROCHIMICA ACTA, 2006, 51 (26) :5912-5919