Adversarial Transformers for Weakly Supervised Object Localization

被引:5
|
作者
Meng, Meng [1 ]
Zhang, Tianzhu [1 ]
Zhang, Zhe [2 ,3 ]
Zhang, Yongdong [4 ]
Wu, Feng [4 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Automat, Hefei, Peoples R China
[2] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Automat, Hefei, Peoples R China
[3] Lunar Explorat & Space Engn Ctr CNSA, Beijing, Peoples R China
[4] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Elect Engn & Informat Sci, Hefei, Peoples R China
[5] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Elect Engn & Informat Sci, Hefei, Peoples R China
关键词
Perturbation methods; Adversarial training; transformers; weakly supervised object localization; SEMANTIC SEGMENTATION;
D O I
10.1109/TIP.2022.3220055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised object localization (WSOL) aims at localizing objects with only image-level labels, which has better scalability and practicability than fully supervised methods. However, without pixel-level supervision, existing methods tend to generate rough localization maps, which hinders localization performance. To alleviate this problem, we propose an adversarial transformer network (ATNet), which aims to obtain a well-learned localization model with pixel-level pseudo labels. The proposed ATNet enjoys several merits. First, we design an object transformer ( $G$ ) that can generate localization maps and pseudo labels effectively and dynamically, and a part transformer ( $D$ ) to accurately discriminate detailed local differences between localization maps and pseudo labels. Second, we propose to train $G$ and $D$ via an adversarial process, where $G$ can generate more accurate localization maps approaching pseudo labels to fool $D$ . To the best of our knowledge, this is the first work to explore transformers with adversarial training to obtain a well-learned localization model for WSOL. Extensive experiments with four backbones on two standard benchmarks demonstrate that our ATNet achieves favorable performance against state-of-the-art WSOL methods. Besides, our adversarial training can provide higher robustness against adversarial attacks.
引用
收藏
页码:7130 / 7143
页数:14
相关论文
共 50 条
  • [31] Progressive Representation Adaptation for Weakly Supervised Object Localization
    Li, Dong
    Huang, Jia-Bin
    Li, Yali
    Wang, Shengjin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1424 - 1438
  • [32] Evaluating Weakly Supervised Object Localization Methods Right
    Choe, Junsuk
    Oh, Seong Joon
    Lee, Seungho
    Chun, Sanghyuk
    Akata, Zeynep
    Shim, Hyunjung
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3130 - 3139
  • [33] Feature disparity learning for weakly supervised object localization
    Li, Bingfeng
    Ruan, Haohao
    Li, Xinwei
    Wang, Keping
    IMAGE AND VISION COMPUTING, 2024, 145
  • [34] DANet: Divergent Activation for Weakly Supervised Object Localization
    Xue, Haolan
    Liu, Chang
    Wan, Fang
    Jiao, Jianbin
    Ji, Xiangyang
    Ye, Qixiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6588 - 6597
  • [35] Shallow Feature Matters for Weakly Supervised Object Localization
    Wei, Jun
    Wang, Qin
    Li, Zhen
    Wang, Sheng
    Zhou, S. Kevin
    Cui, Shuguang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5989 - 5997
  • [36] ViTOL: Vision Transformer for Weakly Supervised Object Localization
    Gupta, Saurav
    Lakhotia, Sourav
    Rawat, Abhay
    Tallamraju, Rahul
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4100 - 4109
  • [37] Weakly Supervised Object Localization Using Size Estimates
    Shi, Miaojing
    Ferrari, Vittorio
    COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 105 - 121
  • [38] Hierarchical complementary learning for weakly supervised object localization
    Benassou, Sabrina Narimene
    Shi, Wuzhen
    Jiang, Feng
    Benzine, Abdallah
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 100
  • [39] Strengthen Learning Tolerance for Weakly Supervised Object Localization
    Guo, Guangyu
    Han, Junwei
    Wan, Fang
    Zhang, Dingwen
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7399 - 7408
  • [40] Background Activation Suppression for Weakly Supervised Object Localization
    Wu, Pingyu
    Zhai, Wei
    Cao, Yang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14228 - 14237