A Novel Structure of Actor-Critic Learning Based on an Interval Type-2 TSK Fuzzy Neural Network

被引:26
作者
Khater, A. Aziz [1 ]
El-Nagar, Ahmad M. [2 ]
El-Bardini, Mohammad [1 ]
El-Rabaie, Nabila [1 ]
机构
[1] Menoufia Univ, Fac Elect Engn, Shibin Al Kawm 32511, Egypt
[2] Menoufia Univ, Dept Ind Elect & Control Engn, Shibin Al Kawm 32511, Egypt
关键词
Fuzzy neural networks; Lyapunov function; reinforcement learning; type-2 fuzzy systems; NONLINEAR DYNAMICAL-SYSTEMS; DISCRETE-TIME-SYSTEMS; ADAPTIVE-CONTROL; DC MOTOR; IDENTIFICATION; CONTROLLER; QUADROTOR;
D O I
10.1109/TFUZZ.2019.2949554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a novel structure of actor-critic learning based on an interval type-2 Takagi-Sugeno-Kang fuzzy neural network (AC-IT2-TSK-FNN) is proposed. The proposed structure consists of two IT2-TSK-FNNs that represent the critic and the actor. Structure and parameter learnings are established for all the rules of the proposed structure. The antecedent and consequent parameters for the critic and actor are updated based on the minimization of the proposed cost function. Optimal values for the learning rates are developed and obtained to achieve stability using Lyapunov theory. The obtained results show the superiority of the proposed structure compared to other existing controllers when applied to nonlinear systems.
引用
收藏
页码:3047 / 3061
页数:15
相关论文
共 59 条
  • [1] A type-2 fuzzy wavelet neural network for system identification and control
    Abiyev, Rahib H.
    Kaynak, Okyay
    Kayacan, Erdal
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (07): : 1658 - 1685
  • [2] A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization
    Abiyev, Rahib H.
    Kaynak, Okyay
    Alshanableh, Tayseer
    Mamedov, Fakhreddin
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (01) : 1396 - 1406
  • [3] Sliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks
    Sevil Ahmed
    Nikola Shakev
    Andon Topalov
    Kostadin Shiev
    Okyay Kaynak
    [J]. Evolving Systems, 2012, 3 (3) : 179 - 188
  • [4] [Anonymous], 2013, REINFORCEMENT LEARNI, DOI DOI 10.1007/S11916-013-0378-Z
  • [5] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [6] Tuning fuzzy PD and PI controllers using reinforcement learning
    Boubertakh, Hamid
    Tadjine, Mohamed
    Glorennec, Pierre-Yves
    Labiod, Salim
    [J]. ISA TRANSACTIONS, 2010, 49 (04) : 543 - 551
  • [7] Busoniu L, 2010, AUTOM CONTROL ENG SE, P1, DOI 10.1201/9781439821091-f
  • [8] Castillo O, 2007, GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, P145
  • [9] A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design
    Castillo, Oscar
    Amador-Angulo, Leticia
    [J]. INFORMATION SCIENCES, 2018, 460 : 476 - 496
  • [10] Interval Type-2 Fuzzy PID Controller: Analytical Structures and Stability Analysis
    El-Bardini, Mohammad
    El-Nagar, Ahmad M.
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (10) : 7443 - 7458