Global solutions for quasilinear parabolic problems

被引:47
作者
Constantin, A
Escher, J
机构
[1] Lund Univ, Dept Math, S-22100 Lund, Sweden
[2] Univ Hannover, Inst Appl Math, D-30167 Hannover, Germany
关键词
global solutions; quasilinear parabolic equations; weakly coupled reaction-diffusion systems; elliptic equations; dynamic boundary conditions;
D O I
10.1007/s00028-002-8081-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Results on the global existence of classical solutions for quasilinear parabolic equations in bounded domains with homogeneous Dirichlet or Neumann boundary conditions are presented. Besides quasilinear parabolic equations, the method is also applicable to some weakly-coupled reaction-diffusion systems and to elliptic equations with nonlinear dynamic boundary conditions.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 24 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1997, ACTA MATH U COMENIAN, V66, P321
[4]   Global existence of solutions for perturbed differential equations. [J].
Constantin, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 168 :237-299
[5]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]   NONLINEAR ELLIPTIC-SYSTEMS WITH DYNAMIC BOUNDARY-CONDITIONS [J].
ESCHER, J .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (03) :413-439
[8]  
Escher J., 1994, ANN SCUOLA NORM SUP, V21, P235
[9]  
ESCHER J, 1994, EVOLUTION EQUATIONS
[10]   A SEMILINEAR PARABOLIC-SYSTEM IN A BOUNDED DOMAIN [J].
ESCOBEDO, M ;
HERRERO, MA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :315-336