Capture of two coordinated evaders in a problem with fractional derivatives, phase restrictions and a simple matrix

被引:5
作者
Petrov, N. N. [1 ]
Machtakova, A., I [1 ]
机构
[1] Udmurt State Univ, Lab Math Control Theory, Dept Differential Equat, Ul Univ Skaya 1, Izhevsk 426034, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2020年 / 56卷
基金
俄罗斯基础研究基金会;
关键词
differential game; pursuer; evader; fractional derivatives; phase restrictions; GROUP PURSUIT; DIFFERENTIAL GAME; EVASION;
D O I
10.35634/2226-3594-2020-56-05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the finite-dimensional Euclidean space, a task of pursuing two evaders by a group of pursuers is considered, described by a system of the form D((alpha))z(ij) = az(ij) + u(i) - v, where D((alpha))f is the Caputo fractional derivative of order alpha is an element of (0, 1) of the function f, and a is a real number. It is assumed that all evaders use the same control and that the evaders do not leave a convex cone with vertex at the origin. The aim of the group of pursuers is to capture two evaders. The pursuers use program counterstrategies based on information about the initial positions and the control history of the evaders. The set of admissible controls is a unit ball centered at zero, the target sets are the origins. In terms of initial positions and game parameters, sufficient conditions for the capture are obtained. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem in some guaranteed time.
引用
收藏
页码:50 / 62
页数:13
相关论文
共 30 条
[1]   Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space [J].
Alias, Idham Arif ;
Ibragimov, Gafurjan ;
Rakhmanov, Askar .
DYNAMIC GAMES AND APPLICATIONS, 2017, 7 (03) :347-359
[2]  
Bannikov AS, 2009, RUSS MATH, V53, P1, DOI 10.3103/S1066369X09050016
[3]  
Blagodatskikh AI, 2015, IZV INST MAT INFORM, P13
[4]  
Blagodatskikh A. I., 2009, Konfliktnoe vzaimodejstvie grupp upravlyaemyh ob'ektov Conflict interaction of groups of controlled objects
[5]  
[Благодатских Александр Иванович Blagodatskikh Aleksandr Ivanovich], 2016, [Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki], V26, P46, DOI 10.20537/vm160104
[6]  
CHERNOUSKO FL, 1976, PMM-J APPL MATH MEC+, V40, P11
[7]  
Chikrii A., 1997, Conflict-controlled processes
[8]  
Chikrii A.A., 2007, DOPOVIDI NAN UKR, P50
[9]  
Grigorenko N. L., 1985, SOV MATH DOKL, V31, P550
[10]  
Grigorenko N. L., 1990, Matematicheskie metody upravleniya neskol'kimi dinamicheskimi protsessami Mathematical methods of control for several dynamic processes