A collaborative filtering recommendation algorithm based on normalization approach

被引:16
|
作者
Panda, Sanjaya Kumar [1 ]
Bhoi, Sourav Kumar [2 ]
Singh, Munesh [3 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Warangal 506004, Andhra Pradesh, India
[2] Parala Maharaja Engn Coll, Dept Comp Sci & Engn, Berhampur 761003, India
[3] Indian Inst Informat Technol Design & Mfg, Dept Comp Sci & Engn, Kancheepuram 600127, India
关键词
Recommender system; Collaborative filtering; Content based; Min– Max normalization; Precision; Recall; MATRIX FACTORIZATION; SIMILARITY MEASURE; SYSTEMS;
D O I
10.1007/s12652-020-01711-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender system (RS) has grown widely in various communities over the last few years. It creates curiosity among the researchers due to the recent growth of various commerce companies, especially Flipkart and Amazon. In collaborative filtering-based RS, the system aims to provide the users with their personalized items, which is based on the users' past history. In general, these observations are represented in the form of rating matrix. However, these ratings are not uniform as some user ratings are stringent and others are lenient. As a result, the RS is incompetent to suggest the personalized items to the stringent users. In this manuscript, we design a normalization-based collaborative filtering recommender to overcome the above problem. The proposed algorithm consists of two phases, namely designing and evaluating. In the first phase, the proposed algorithm finds the average user rating per item and counts the number of users purchased each item. Then it uses min-max normalization to find the normalized user count per item and scale the average ratings of users in a specified range. In the latter phase, the proposed algorithm divides the rating matrix into training and testing rating matrix, and predicts the users' ratings. We perform rigorous simulations using a large variety of users and items, and compare the results with a collaborative filtering-based RS using ten performance metrics to illustrate the efficacy of the proposed algorithm. Moreover, we evaluate the results through a statistical test, t-test and 95% confidence interval.
引用
收藏
页码:4643 / 4665
页数:23
相关论文
共 50 条
  • [21] A Collaborative Filtering Recommendation Algorithm Based On Item Classification
    Tan, HengSong
    Ye, HongWu
    PROCEEDINGS OF THE 2009 PACIFIC-ASIA CONFERENCE ON CIRCUITS, COMMUNICATIONS AND SYSTEM, 2009, : 694 - +
  • [22] AS-INDEX BASED COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM
    Yu, Xiao-Peng
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 1570 - 1576
  • [23] Collaborative filtering recommendation algorithm based on weighed grade
    Wang, Huaibin
    Guo, Jingze
    Wang, Chundong
    Wang, Huaibin, 1600, Binary Information Press (10): : 9995 - 10001
  • [24] Collaborative filtering recommendation algorithm based on hybrid similarity
    Xu, Xiangshen
    Zhang, Yunhua
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 1367 - 1370
  • [25] Collaborative Filtering Recommendation Algorithm Based on Item Attributes
    Huang, Mengxing
    Sun, Longfei
    Du, Wencai
    2014 15TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2014, : 29 - 39
  • [26] Exercise recommendation algorithm based on improved collaborative filtering
    Li, Zhizhuang
    Hu, Haiyang
    Xia, Zhipeng
    Zhang, Jianping
    Li, Xiaoli
    Shi, Jingyan
    Li, Hailong
    Li, Xuezhang
    IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 47 - 49
  • [27] Collaborative Filtering Algorithm in Pictures Recommendation Based on SVD
    Xiong Yaohua
    Li Hanxi
    2018 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2018), 2018, : 262 - 265
  • [28] An Improved Collaborative Filtering Recommendation Algorithm Based on Reliability
    Fan, Shiping
    Yu, Hao
    Huang, Haihui
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 45 - 51
  • [29] A Collaborative Filtering Recommendation Algorithm Based on SVD Smoothing
    Ren, YiBo
    Gong, SongJie
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 2, PROCEEDINGS, 2009, : 530 - 532
  • [30] A collaborative filtering recommendation algorithm based on embedding representation
    Alharbe, Nawaf
    Rakrouki, Mohamed Ali
    Aljohani, Abeer
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215