A collaborative filtering recommendation algorithm based on normalization approach

被引:16
|
作者
Panda, Sanjaya Kumar [1 ]
Bhoi, Sourav Kumar [2 ]
Singh, Munesh [3 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Warangal 506004, Andhra Pradesh, India
[2] Parala Maharaja Engn Coll, Dept Comp Sci & Engn, Berhampur 761003, India
[3] Indian Inst Informat Technol Design & Mfg, Dept Comp Sci & Engn, Kancheepuram 600127, India
关键词
Recommender system; Collaborative filtering; Content based; Min– Max normalization; Precision; Recall; MATRIX FACTORIZATION; SIMILARITY MEASURE; SYSTEMS;
D O I
10.1007/s12652-020-01711-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender system (RS) has grown widely in various communities over the last few years. It creates curiosity among the researchers due to the recent growth of various commerce companies, especially Flipkart and Amazon. In collaborative filtering-based RS, the system aims to provide the users with their personalized items, which is based on the users' past history. In general, these observations are represented in the form of rating matrix. However, these ratings are not uniform as some user ratings are stringent and others are lenient. As a result, the RS is incompetent to suggest the personalized items to the stringent users. In this manuscript, we design a normalization-based collaborative filtering recommender to overcome the above problem. The proposed algorithm consists of two phases, namely designing and evaluating. In the first phase, the proposed algorithm finds the average user rating per item and counts the number of users purchased each item. Then it uses min-max normalization to find the normalized user count per item and scale the average ratings of users in a specified range. In the latter phase, the proposed algorithm divides the rating matrix into training and testing rating matrix, and predicts the users' ratings. We perform rigorous simulations using a large variety of users and items, and compare the results with a collaborative filtering-based RS using ten performance metrics to illustrate the efficacy of the proposed algorithm. Moreover, we evaluate the results through a statistical test, t-test and 95% confidence interval.
引用
收藏
页码:4643 / 4665
页数:23
相关论文
共 50 条
  • [1] A collaborative filtering recommendation algorithm based on normalization approach
    Sanjaya Kumar Panda
    Sourav Kumar Bhoi
    Munesh Singh
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 4643 - 4665
  • [2] Research on User-based Normalization Collaborative Filtering Recommendation Algorithm
    Dong, Jie
    Li, Jin
    Li, Gui
    Du, Liming
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 1586 - 1591
  • [3] Collaborative Filtering Recommendation Model Based on Normalization Method
    Yan, Gao
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (10): : 291 - 299
  • [4] Recommendation Model Based on Collaborative Filtering Recommendation Algorithm
    Huang, Jun
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 67 - 70
  • [5] Collaborative Filtering Recommendation Algorithm Based on Cluster
    Li, Xingyuan
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 2682 - 2685
  • [6] Logistic recommendation algorithm based on collaborative filtering
    Zhang Xiaoyu
    Dai Chaofan
    Zhao yanpeng
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 865 - 868
  • [7] Collaborative filtering recommendation algorithm based on spark
    Tao J.
    Gan J.
    Wen B.
    International Journal of Performability Engineering, 2019, 15 (03) : 930 - 938
  • [8] A Collaborative Filtering Recommendation Algorithm Based on Biclustering
    Wang, Jiasheng
    Song, Hong
    Zhou, Xiaofeng
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 803 - 807
  • [9] A Book Recommendation Algorithm Based on Collaborative Filtering
    Zhu, Yuanqing
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 286 - 289
  • [10] Research on Recommendation Algorithm Based on Collaborative Filtering
    Zhang Shichang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,