CONVERGENCE AND QUASI-OPTIMALITY OF L2-NORMS BASED AN ADAPTIVE FINITE ELEMENT METHOD FOR NONLINEAR OPTIMAL CONTROL PROBLEMS

被引:1
作者
Lu, Zuliang [1 ,2 ]
Huang, Fei [1 ]
Wu, Xiankui [1 ]
Li, Lin [3 ]
Liu, Shang [4 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing 404000, Peoples R China
[2] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 04期
基金
中国国家社会科学基金;
关键词
Nonlinear optimal control problem; adaptive finite element method; convergence; quasi-optimality; APPROXIMATION; ALGORITHM;
D O I
10.3934/era.2020077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at investigating the convergence and quasi-optimality of an adaptive finite element method for control constrained nonlinear elliptic optimal control problems. We derive a posteriori error estimation for both the control, the state and adjoint state variables under controlling by L-2-norms where bubble function is a wonderful tool to deal with the global lower error bound. Then a contraction is proved before the convergence is proposed. Furthermore, we find that if keeping the grids sufficiently mildly graded, we can prove the optimal convergence and the quasi-optimality for the adaptive finite element method. In addition, some numerical results are presented to verify our theoretical analysis.
引用
收藏
页码:1459 / 1486
页数:28
相关论文
共 32 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
[Anonymous], TRENDS PDE CONSTRAIN
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY [J].
Becker, Roland ;
Mao, Shipeng ;
Shi, Zhongci .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4639-4659
[5]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[6]   Convergence analysis of a conforming adaptive finite element method for an obstacle problem [J].
Braess, Dietrich ;
Carstensen, Carsten ;
Hoppe, Ronald H. W. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :455-471
[7]   Error reduction and convergence for an adaptive mixed finite element method [J].
Carstensen, Carsten ;
Hoppe, R. H. W. .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1033-1042
[8]   Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints [J].
Casas, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :345-374
[9]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[10]   Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics [J].
Chen, Huajie ;
Gong, Xingao ;
He, Lianhua ;
Zhou, Aihui .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2011, 3 (04) :493-518