Observation bias correction with an ensemble Kalman filter

被引:48
作者
Fertig, Elana J. [1 ]
Baek, Seung-Jong
Hunt, Brian R. [2 ,3 ,4 ]
Ott, Edward [5 ]
Szunyogh, Istvan [3 ,6 ]
Aravequia, Jose A. [3 ,6 ,7 ]
Kalnay, Eugenia [3 ,6 ]
Li, Hong [8 ]
Liu, Junjie [9 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21205 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[7] Brazilian Inst Space Res, Ctr Weather Forecast & Climat Studies, BR-12630 Cahoeira Paulista, SP, Brazil
[8] Shanghai Typhoon Inst, Shanghai, Peoples R China
[9] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ATMOSPHERIC DATA ASSIMILATION; NUMERICAL WEATHER PREDICTION; PERFECT MODEL EXPERIMENTS; GLOBAL-MODEL; SYSTEM; RADIANCES; DYNAMICS; GCM;
D O I
10.1111/j.1600-0870.2008.00378.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data assimilation procedure. We illustrate our approach by applying it to a particular ensemble scheme-the local ensemble transform Kalman filter (LETKF)-to assimilate simulated biased atmospheric infrared sounder brightness temperature observations from 15 channels on the simplified parameterizations, primitive-equation dynamics (SPEEDY) model. The scheme we present successfully reduces both the observation bias and analysis error in perfect-model simulations.
引用
收藏
页码:210 / 226
页数:17
相关论文
共 48 条
[31]  
Miyoshi T., 2005, Ensemble Kalman Filter Experiments with a Primitive-equation Global Model
[32]   Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments [J].
Molteni, F .
CLIMATE DYNAMICS, 2003, 20 (2-3) :175-191
[33]   Mechanisms for the development of locally low-dimensional atmospheric dynamics [J].
Oczkowski, M ;
Szunyogh, I ;
Patil, DJ .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2005, 62 (04) :1135-1156
[34]  
Ogata K., 1990, MODERN CONTROL ENG
[35]  
Ott E, 2004, TELLUS A, V56, P415, DOI 10.1111/j.1600-0870.2004.00076.x
[36]  
Patil DJ, 2001, PHYS REV LETT, V86, P5878, DOI 10.1103/PhysRevLett86.5878
[37]  
Rizzi R, 1998, Q J ROY METEOR SOC, V124, P1293, DOI 10.1002/qj.49712454813
[38]   Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds [J].
Susskind, J ;
Barnet, CD ;
Blaisdell, JM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :390-409
[39]   Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model [J].
Szunyogh, I ;
Kostelich, EJ ;
Gyarmati, G ;
Patil, DJ ;
Hunt, BR ;
Kalnay, E ;
Ott, E ;
Yorke, JA .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (04) :528-545
[40]  
Szunyogh I., 2007, Proc. Flow Dependent Aspects of Data Assimilation, P47