Observation bias correction with an ensemble Kalman filter

被引:48
作者
Fertig, Elana J. [1 ]
Baek, Seung-Jong
Hunt, Brian R. [2 ,3 ,4 ]
Ott, Edward [5 ]
Szunyogh, Istvan [3 ,6 ]
Aravequia, Jose A. [3 ,6 ,7 ]
Kalnay, Eugenia [3 ,6 ]
Li, Hong [8 ]
Liu, Junjie [9 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21205 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[7] Brazilian Inst Space Res, Ctr Weather Forecast & Climat Studies, BR-12630 Cahoeira Paulista, SP, Brazil
[8] Shanghai Typhoon Inst, Shanghai, Peoples R China
[9] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ATMOSPHERIC DATA ASSIMILATION; NUMERICAL WEATHER PREDICTION; PERFECT MODEL EXPERIMENTS; GLOBAL-MODEL; SYSTEM; RADIANCES; DYNAMICS; GCM;
D O I
10.1111/j.1600-0870.2008.00378.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data assimilation procedure. We illustrate our approach by applying it to a particular ensemble scheme-the local ensemble transform Kalman filter (LETKF)-to assimilate simulated biased atmospheric infrared sounder brightness temperature observations from 15 channels on the simplified parameterizations, primitive-equation dynamics (SPEEDY) model. The scheme we present successfully reduces both the observation bias and analysis error in perfect-model simulations.
引用
收藏
页码:210 / 226
页数:17
相关论文
共 48 条
[1]  
Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
[2]  
2
[3]   Adaptive bias correction for satellite data in a numerical weather prediction system [J].
Auligne, T. ;
McNally, A. P. ;
Dee, D. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (624) :631-642
[4]   Local ensemble Kalman filtering in the presence of model bias [J].
Baek, SJ ;
Hunt, BR ;
Kalnay, E ;
Ott, E ;
Szunyogh, I .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2006, 58 (03) :293-306
[5]  
CAMERON JRN, 2003, EFFECTIVENESS AIRS B
[6]   Bias and data assimilation [J].
Dee, D. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) :3323-3343
[7]   Data assimilation in the presence of forecast bias [J].
Dee, DP ;
Da Silva, AM .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (545) :269-295
[8]  
Derber JC, 1998, MON WEATHER REV, V126, P2287, DOI 10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO
[9]  
2
[10]  
Eyre J.R., 1992, A bias correction scheme for simulated TOVS brightness temperatures