Deceleration phase of inertial confinement fusion implosions

被引:131
作者
Betti, R
Anderson, K
Goncharov, VN
McCrory, RL
Meyerhofer, DD
Skupsky, S
Town, RPJ
机构
[1] Univ Rochester, Laser Energet Lab, Dept Mech Engn, Rochester, NY 14623 USA
[2] Univ Rochester, Laser Energet Lab, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.1459458
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for the deceleration phase and marginal ignition of imploding capsules is derived by solving a set of ordinary differential equations describing the hot-spot energy balance and the shell dynamics including the return shock propagation. It is found that heat flux leaving the hot spot goes back in the form of internal energy and PdV work of the material ablated off the inner-shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For hot-spot temperatures exceeding approximately 7 keV, the ignition conditions are not affected by heat conduction losses that are recycled into the hot spot by ablation. Instead, the only significant internal energy loss is due to the hot-spot expansion tamped by the surrounding shell. The change of adiabat induced by the shock is also calculated for marginally igniting shells, and the relation between the in-flight and stagnation adiabats is in general agreement with the numerical fit of LASNEX simulations by Herrmann [Nucl. Fusion 41, 99 (2001)] and the self-similar solution of Kemp [Phys. Rev. Lett. 15, 3336 (2001)]. The minimum kinetic energy required for ignition is also calculated from the same model and shown to be in good agreement with the numerical fit of LASNEX simulations. It is also found that mass ablation leads to a significant reduction of the deceleration phase Rayleigh-Taylor instability growth rates and to the suppression of short wavelength modes. (C) 2002 American Institute of Physics.
引用
收藏
页码:2277 / 2286
页数:10
相关论文
共 50 条
[31]   Collection of solid and gaseous samples to diagnose inertial confinement fusion implosions [J].
Stoyer, M. A. ;
Velsko, C. A. ;
Spears, B. K. ;
Hicks, D. G. ;
Hudson, G. B. ;
Sangster, T. C. ;
Freeman, C. G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[32]   Multifluid interpenetration mixing in directly driven inertial confinement fusion capsule implosions [J].
Wilson, DC ;
Cranfill, CW ;
Christensen, C ;
Forster, RA ;
Peterson, RR ;
Hoffman, NM ;
Pollak, GD ;
Li, CK ;
Séguin, FH ;
Frenje, JA ;
Petrasso, RD ;
McKenty, PW ;
Marshall, FJ ;
Glebov, VY ;
Stoeckl, C ;
Schmid, GJ ;
Izumi, N ;
Amendt, P .
PHYSICS OF PLASMAS, 2004, 11 (05) :2723-2728
[33]   Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies [J].
Glenzer, S. H. ;
MacGowan, B. J. ;
Michel, P. ;
Meezan, N. B. ;
Suter, L. J. ;
Dixit, S. N. ;
Kline, J. L. ;
Kyrala, G. A. ;
Bradley, D. K. ;
Callahan, D. A. ;
Dewald, E. L. ;
Divol, L. ;
Dzenitis, E. ;
Edwards, M. J. ;
Hamza, A. V. ;
Haynam, C. A. ;
Hinkel, D. E. ;
Kalantar, D. H. ;
Kilkenny, J. D. ;
Landen, O. L. ;
Lindl, J. D. ;
LePape, S. ;
Moody, J. D. ;
Nikroo, A. ;
Parham, T. ;
Schneider, M. B. ;
Town, R. P. J. ;
Wegner, P. ;
Widmann, K. ;
Whitman, P. ;
Young, B. K. F. ;
Van Wonterghem, B. ;
Atherton, L. J. ;
Moses, E. I. .
SCIENCE, 2010, 327 (5970) :1228-1231
[34]   Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion [J].
Weber, C. R. ;
Clark, D. S. ;
Cook, A. W. ;
Eder, D. C. ;
Haan, S. W. ;
Hammel, B. A. ;
Hinkel, D. E. ;
Jones, O. S. ;
Marinak, M. M. ;
Milovich, J. L. ;
Patel, P. K. ;
Robey, H. F. ;
Salmonson, J. D. ;
Sepke, S. M. ;
Thomas, C. A. .
PHYSICS OF PLASMAS, 2015, 22 (03)
[35]   Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions [J].
Rinderknecht, H. G. ;
Sio, H. ;
Li, C. K. ;
Hoffman, N. ;
Zylstra, A. B. ;
Rosenberg, M. J. ;
Frenje, J. A. ;
Johnson, M. Gatu ;
Seguin, F. H. ;
Petrasso, R. D. ;
Betti, R. ;
Glebov, V. Yu ;
Meyerhofer, D. D. ;
Sangster, T. C. ;
Seka, W. ;
Stoeckl, C. ;
Kagan, G. ;
Molvig, K. ;
Bellei, C. ;
Amendt, P. ;
Landen, O. ;
Rygg, J. R. ;
Smalyuk, V. A. ;
Wilks, S. ;
Greenwood, A. ;
Nikroo, A. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[36]   Low-adiabat implosions for fast-ignition inertial confinement fusion [J].
Betti, R. ;
Zhou, C. .
JOURNAL DE PHYSIQUE IV, 2006, 133 :379-383
[37]   The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions [J].
Haines, Brian M. ;
Shah, R. C. ;
Smidt, J. M. ;
Albright, B. J. ;
Cardenas, T. ;
Douglas, M. R. ;
Forrest, C. ;
Glebov, V. Yu. ;
Gunderson, M. A. ;
Hamilton, C. ;
Henderson, K. ;
Kim, Y. ;
Lee, M. N. ;
Murphy, T. J. ;
Oertel, J. A. ;
Olson, R. E. ;
Patterson, B. M. ;
Randolph, R. B. ;
Schmidt, D. .
PHYSICS OF PLASMAS, 2020, 27 (10)
[38]   Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions [J].
Crilly, A. J. ;
Appelbe, B. D. ;
McGlinchey, K. ;
Walsh, C. A. ;
Tong, J. K. ;
Boxall, A. B. ;
Chittenden, J. P. .
PHYSICS OF PLASMAS, 2018, 25 (12)
[39]   Moderate-convergence inertial confinement fusion implosions in tetrahedral hohlraums at Omega [J].
Bennett, GR ;
Wallace, JM ;
Murphy, TJ ;
Chrien, RE ;
Delamater, ND ;
Gobby, PL ;
Hauer, AA ;
Klare, KA ;
Oertel, JA ;
Watt, RG ;
Wilson, DC ;
Varnum, WS ;
Craxton, RS ;
Glebov, VY ;
Schnittman, JD ;
Stoeckl, C ;
Pollaine, SM ;
Turner, RE .
PHYSICS OF PLASMAS, 2000, 7 (06) :2594-2603
[40]   Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition Facility [J].
Rinderknecht, Hans G. ;
Casey, D. T. ;
Hatarik, R. ;
Bionta, R. M. ;
MacGowan, B. J. ;
Patel, P. ;
Landen, O. L. ;
Hartouni, E. P. ;
Hurricane, O. A. .
PHYSICAL REVIEW LETTERS, 2020, 124 (14)