The subgaussian constant and concentration inequalities

被引:23
作者
Bobkov, S. G. [1 ]
Houdre, C.
Tetali, P.
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Paris 12, CNRS, UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1007/BF02773835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study concentration inequalities for Lipschitz functions on graphs by estimating the optimal constant in exponential moments of subgaussian type. This is illustrated on various graphs and related to various graph constants. We also settle, in the affirmative, a question of Talagrand on a deviation inequality for the discrete cube.
引用
收藏
页码:255 / 283
页数:29
相关论文
共 32 条