Matrix representations for classical and quantum beam splitters

被引:4
作者
Bucholtz, Frank [1 ]
Singley, Joseph M. [2 ]
机构
[1] KeyW Corp, Hanover, MD 21076 USA
[2] US Naval Res Lab, Opt Sci Div, Washington, DC USA
关键词
optics; photonics; beam splitter; waveguide coupler; fused fiber coupler; matrix representations; classical optics; quantum optics; RECIPROCITY RELATIONS; DERIVATION; SU(2);
D O I
10.1117/1.OE.59.12.120801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Matrices provide a practical and elegant tool for describing the transformation properties of beam splitters and waveguide couplers acting on single-mode optical fields. Using a systematic approach, we show how the application of various physical constraints determines the form of the matrix for both classical fields and quantum number states. The goal is to provide a clear explanation of the conditions under which various matrix forms are appropriate to represent four-port couplers and beam splitters. Examples of calculations using the matrices are provided. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:13
相关论文
共 29 条
[1]   A DUAL-DETECTOR OPTICAL HETERODYNE RECEIVER FOR LOCAL OSCILLATOR NOISE SUPPRESSION [J].
ABBAS, GL ;
CHAN, VWS ;
YEE, TK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1985, 3 (05) :1110-1122
[2]  
[Anonymous], 1991, Theory of Dielectric Optical Waveguides
[3]  
[Anonymous], 2005, Polarization optics in telecommunications
[4]  
Bachor H.-A., 2019, A Guide to Experiments in Quantum Optics, V3rd
[5]   QUANTUM-MECHANICAL LOSSLESS BEAM SPLITTER - SU(2) SYMMETRY AND PHOTON STATISTICS [J].
CAMPOS, RA ;
SALEH, BEA ;
TEICH, MC .
PHYSICAL REVIEW A, 1989, 40 (03) :1371-1384
[7]   QUANTUM-THEORY OF THE LOSSLESS BEAM SPLITTER [J].
FEARN, H ;
LOUDON, R .
OPTICS COMMUNICATIONS, 1987, 64 (06) :485-490
[8]  
Garrison JC., 2008, Quantum optics
[9]  
Haus HA., 2000, ADV TEXTS PHYS, DOI 10.1007/978-3-662-04190-1
[10]   Photon quantum mechanics and beam splitters [J].
Holbrow, CH ;
Galvez, E ;
Parks, ME .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (03) :260-265