Effect of Film-Forming Amines on the Acidic Stress-Corrosion Cracking Resistance of Steam Turbine Steel

被引:5
作者
De Seranno, Tim [1 ]
Lambrechts, Ellen [1 ]
De Meyer, Evelyn [2 ]
Hater, Wolfgang [3 ]
De Geyter, Nathalie [4 ]
Verliefde, Arne R. D. [2 ]
Depover, Tom [1 ]
Verbeken, Kim [1 ]
机构
[1] Univ Ghent, Dept Mat Text & Chem Engn, Res Unit Sustainable Mat Sci, Technol Pk 46, B-9052 Zwijnaarde, Belgium
[2] Univ Ghent, Dept Green Chem & Technol, Coupure Links 653, B-9000 Ghent, Belgium
[3] Kurita Europe GmbH, Niederheider Str 22, D-40589 Dusseldorf, Germany
[4] Univ Ghent, Dept Appl Phys, Res Unit Plasma Technol, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
关键词
film-forming amines; stress-corrosion cracking; low alloy steel; acid solutions; XPS; SEM; FLOW-ACCELERATED CORROSION; ION-EXCHANGE DEMINERALIZATION; ORGANIC-MATTER; WATER; BEHAVIOR; OCTADECYLAMINE; PLASMA; DAMAGE;
D O I
10.3390/met10121628
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work evaluates the effect of film-forming amines (FFA) on the acidic stress-corrosion cracking (SCC) resistance of NiCrMoV turbine steel. Contact angle measurements show an increased hydrophobicity of the surface when coating the steel with oleyl propylene diamine (OLDA). According to potentiodynamic measurements and post-mortem scanning electron microscopy (SEM) analysis, anodic dissolution and hydrogen embrittlement still occur when the steel is FFA coated. In situ constant extension rate testing (CERT) in acidic aqueous environment at elevated temperature of FFA-coated steel shows a ductility gain compared to non-coated steel, explained by a decrease in both corrosion rate and hydrogen uptake.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Stress corrosion cracking of CrNi martensitic stainless steels for steam turbine blades
    Verona, C. L.
    Higginson, R. L.
    MATERIALS AT HIGH TEMPERATURES, 2009, 26 (01) : 79 - 83
  • [32] INHIBITION EFFECTS OF I- AND I2 ON STRESS-CORROSION CRACKING OF STAINLESS-STEEL IN ACIDIC CHLORIDE SOLUTIONS
    HUANG, YL
    CAO, CN
    LU, M
    LIN, HC
    CORROSION, 1993, 49 (08) : 644 - 649
  • [33] Pitting corrosion and stress corrosion cracking of austenitic stainless steel in acidic chloride environment
    Pornpibunsompop, Tosapolporn
    PROCEEDINGS OF THE 2018 5TH ASIAN CONFERENCE ON DEFENSE TECHNOLOGY (ACDT 2018), 2018, : 81 - 85
  • [34] Film-forming amines adsorption and corrosion kinetics on carbon steel surface in neutral solution investigated by EIS and PM-IRRAS analysis
    Jero, Deni
    Causse, Nicolas
    Marsan, Olivier
    Buffeteau, Thierry
    Chaussec, Fabrice
    Buvignier, Amaury
    Roy, Marion
    Pebere, Nadine
    ELECTROCHIMICA ACTA, 2023, 443
  • [35] Improvement of stress corrosion cracking resistance by low cycle fatigue of a CrNiMoV steel
    Huang, Yu-Hui
    Yang, Fang-Xin
    Wang, Nan
    Zhu, Ming-Liang
    Xuan, Fu-Zhen
    NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [36] EFFECT OF APPLIED POTENTIALS ON ROOM-TEMPERATURE STRESS-CORROSION CRACKING OF AUSTENITIC STAINLESS-STEEL WELDMENTS
    RAJA, KS
    RAO, KP
    CORROSION, 1992, 48 (08) : 634 - 640
  • [37] Stress-Corrosion Cracking of AISI 316L Stainless Steel in Seawater Environments: Effect of Surface Machining
    Ren, Zhe
    Ernst, Frank
    METALS, 2020, 10 (10) : 1 - 17
  • [38] Stress corrosion cracking of AISI 321 stainless steel in acidic chloride solution
    Yanliang Huang
    Bulletin of Materials Science, 2002, 25 : 47 - 51
  • [39] Stress corrosion cracking of AISI 321 stainless steel in acidic chloride solution
    Huang, YL
    BULLETIN OF MATERIALS SCIENCE, 2002, 25 (01) : 47 - 51
  • [40] STRESS-CORROSION CRACKING OF SENSITIZED TYPE-304-STAINLESS-STEEL IN DOPED HIGH-TEMPERATURE WATER
    CONGLETON, J
    BERRISFORD, RA
    YANG, W
    CORROSION, 1995, 51 (12) : 901 - 910