CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NONNEGATIVE CURVATURE

被引:0
|
作者
Qian, Chao [1 ]
Tang, Zizhou [2 ,3 ]
Yan, Wenjiao [4 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Nankai Univ, Chern Inst Math, Beijing, Peoples R China
[3] Nankai Univ, LPMC, Beijing, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
关键词
isoparametric hypersurface; focal submanifold; Clifford system; characteristic map; harmonic map; nonnegative sectional curvature; 4 PRINCIPAL CURVATURES; ISOPARAMETRIC HYPERSURFACES; MAPPINGS;
D O I
10.2140/pjm.2022.320.391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated with a symmetric Clifford system {P-0, P-1,..., P-m} on R-2l, there is a canonical vector bundle eta over Sl-1. For m = 4 and 8, we construct explicitly its characteristic map, and determine completely when the sphere bundle S(eta) associated to eta admits a cross-section. These generalize the results of Steenrod (1951) and James (1958). As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (see [Peng and Tang 1997; 1998]). By a suitable choice of Clifford system, we construct a metric of nonnegative curvature on S(eta) which is diffeomorphic to the inhomogeneous focal submanifold M+ of OT-FKM type isoparametric hypersurfaces with m = 3.
引用
收藏
页码:391 / 424
页数:34
相关论文
共 50 条
  • [41] LAGRANGIAN HARMONIC MAPS INTO CPN
    MO, XH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (05): : 524 - 532
  • [42] Explicit constructions of harmonic maps
    Wood, J. C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 41 - 73
  • [43] A semigroup approach to harmonic maps
    Sturm, KT
    POTENTIAL ANALYSIS, 2005, 23 (03) : 225 - 277
  • [44] HARMONIC AND BIHARMONIC MAPS AT IASI
    Balmus, A.
    Fetcu, D.
    Oniciuc, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 81 - 96
  • [45] Polyhedra as domains of harmonic maps
    Fuglede, Bent
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (05) : 815 - 830
  • [46] ON THE RANGE OF HARMONIC MAPS IN THE PLANE
    Llorente, Jose G.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 915 - 930
  • [47] Harmonic extensions of symmetric maps
    Fotiadis, Anestis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (03) : 271 - 278
  • [48] On the Morse Index of Harmonic Maps
    Benallal, Hafida
    Benalili, Mohammed
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [49] A bridge principle for harmonic maps
    Lee, Y
    Wang, AN
    Wu, DY
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (02) : 107 - 127
  • [50] A Factorization Theorem for Harmonic Maps
    Nathaniel Sagman
    The Journal of Geometric Analysis, 2021, 31 : 11714 - 11740