CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NONNEGATIVE CURVATURE

被引:0
|
作者
Qian, Chao [1 ]
Tang, Zizhou [2 ,3 ]
Yan, Wenjiao [4 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Nankai Univ, Chern Inst Math, Beijing, Peoples R China
[3] Nankai Univ, LPMC, Beijing, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
关键词
isoparametric hypersurface; focal submanifold; Clifford system; characteristic map; harmonic map; nonnegative sectional curvature; 4 PRINCIPAL CURVATURES; ISOPARAMETRIC HYPERSURFACES; MAPPINGS;
D O I
10.2140/pjm.2022.320.391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated with a symmetric Clifford system {P-0, P-1,..., P-m} on R-2l, there is a canonical vector bundle eta over Sl-1. For m = 4 and 8, we construct explicitly its characteristic map, and determine completely when the sphere bundle S(eta) associated to eta admits a cross-section. These generalize the results of Steenrod (1951) and James (1958). As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (see [Peng and Tang 1997; 1998]). By a suitable choice of Clifford system, we construct a metric of nonnegative curvature on S(eta) which is diffeomorphic to the inhomogeneous focal submanifold M+ of OT-FKM type isoparametric hypersurfaces with m = 3.
引用
收藏
页码:391 / 424
页数:34
相关论文
共 50 条
  • [31] Sobolev spaces of maps and the Dirichlet problem for harmonic maps
    Pigola, Stefano
    Veronelli, Giona
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [32] COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS
    Wu, Tianqi
    Yau, Shing-Tung
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05): : 880 - 909
  • [33] A Bridge Principle for Harmonic Maps
    Ynging Lee
    Ai Nung Wang
    Derchyi Wu
    Annals of Global Analysis and Geometry, 2000, 18 : 107 - 127
  • [34] On the Morse Index of Harmonic Maps
    Hafida Benallal
    Mohammed Benalili
    Mediterranean Journal of Mathematics, 2023, 20
  • [35] Exponentially harmonic maps and their properties
    Chiang, Yuan-Jen
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (17-18) : 1970 - 1980
  • [36] A Semigroup Approach to Harmonic Maps
    Karl-Theodor Sturm
    Potential Analysis, 2005, 23 : 225 - 277
  • [37] A Factorization Theorem for Harmonic Maps
    Sagman, Nathaniel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11714 - 11740
  • [38] Harmonic maps on Sasakian manifolds
    Jaiswal, Jai Prakash
    JOURNAL OF GEOMETRY, 2013, 104 (02) : 309 - 315
  • [39] Regularity of harmonic maps with the potential
    Chu, YM
    Liu, XG
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 599 - 610
  • [40] Regularity of harmonic maps with the potential
    Yuming Chu
    Xiangao Liu
    Science in China Series A, 2006, 49 : 599 - 610