CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NONNEGATIVE CURVATURE

被引:0
作者
Qian, Chao [1 ]
Tang, Zizhou [2 ,3 ]
Yan, Wenjiao [4 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Nankai Univ, Chern Inst Math, Beijing, Peoples R China
[3] Nankai Univ, LPMC, Beijing, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
关键词
isoparametric hypersurface; focal submanifold; Clifford system; characteristic map; harmonic map; nonnegative sectional curvature; 4 PRINCIPAL CURVATURES; ISOPARAMETRIC HYPERSURFACES; MAPPINGS;
D O I
10.2140/pjm.2022.320.391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated with a symmetric Clifford system {P-0, P-1,..., P-m} on R-2l, there is a canonical vector bundle eta over Sl-1. For m = 4 and 8, we construct explicitly its characteristic map, and determine completely when the sphere bundle S(eta) associated to eta admits a cross-section. These generalize the results of Steenrod (1951) and James (1958). As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (see [Peng and Tang 1997; 1998]). By a suitable choice of Clifford system, we construct a metric of nonnegative curvature on S(eta) which is diffeomorphic to the inhomogeneous focal submanifold M+ of OT-FKM type isoparametric hypersurfaces with m = 3.
引用
收藏
页码:391 / 424
页数:34
相关论文
共 33 条
[1]   ON COMPLEX STIEFEL MANIFOLDS [J].
ADAMS, JF ;
WALKER, G .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 :81-&
[2]  
Atiyah M.F., 1964, Topology, V3, P3, DOI DOI 10.1016/0040-9383(64)90003-5
[3]   THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1959, 70 (02) :313-337
[4]  
Bott R., 1958, Mich. Math. J., V5, P35, DOI 10.1307/MMJ/1028998010
[5]   Isoparametric hypersurfaces with four principal curvatures [J].
Cecil, Thomas E. ;
Chi, Quo-Shin ;
Jensen, Gary R. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :1-76
[6]  
Chi QS, 2020, J DIFFER GEOM, V115, P225
[7]  
Chi QS, 2013, J DIFFER GEOM, V94, P469
[8]  
Ding W. Y., 1994, INT J MATH, V5, P849
[9]   Blakers-Massey elements and exotic diffeomorphisms of S6 and S14 via geodesics [J].
Durán, CE ;
Mendoza, A ;
Rigas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (12) :5025-5043
[10]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&