Invariant Finsler metrics on homogeneous manifolds

被引:63
作者
Deng, SQ [1 ]
Hou, ZX
机构
[1] Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 34期
关键词
D O I
10.1088/0305-4470/37/34/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study invariant Finsler metrics on homogeneous manifolds. We first give an algebraic description of these metrics and obtain a necessary and sufficient condition for a homogeneous manifold to have invariant Finsler metrics. As a special case, we study bi-invariant Finsler metrics on Lie groups and obtain a necessary and sufficient condition for a Lie group to have bi-invariant Finsler metrics. Finally, we provide some conditions for a homogeneous manifold to admit invariant non-Riemannian Finsler metrics and present some interesting examples.
引用
收藏
页码:8245 / 8253
页数:9
相关论文
共 7 条
  • [1] Antonelli PL, 1993, THEORY SPRAYS FINSLE
  • [2] Bao D, 2000, An introduction to Riemann-Finsler geometry
  • [3] CHERM SS, 2004, RIEMANN FINSLER GEOM
  • [4] Invariant randers metrics on homogeneous riemannian manifolds
    Deng, SQ
    Hou, ZX
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15): : 4353 - 4360
  • [5] Kobayashi S., 1969, Foundation of differential geometry, VII
  • [6] Nomizu K., 1954, AM J MATH, V76, P33, DOI [10.2307/2372398, DOI 10.2307/2372398]
  • [7] Szabo Z. I., 1981, TENSOR, V35, P25