Invariant Finsler metrics on homogeneous manifolds

被引:64
作者
Deng, SQ [1 ]
Hou, ZX
机构
[1] Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 34期
关键词
D O I
10.1088/0305-4470/37/34/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study invariant Finsler metrics on homogeneous manifolds. We first give an algebraic description of these metrics and obtain a necessary and sufficient condition for a homogeneous manifold to have invariant Finsler metrics. As a special case, we study bi-invariant Finsler metrics on Lie groups and obtain a necessary and sufficient condition for a Lie group to have bi-invariant Finsler metrics. Finally, we provide some conditions for a homogeneous manifold to admit invariant non-Riemannian Finsler metrics and present some interesting examples.
引用
收藏
页码:8245 / 8253
页数:9
相关论文
共 7 条
[1]  
Antonelli PL, 1993, THEORY SPRAYS FINSLE
[2]  
Bao D, 2000, An introduction to Riemann-Finsler geometry
[3]  
CHERM SS, 2004, RIEMANN FINSLER GEOM
[4]   Invariant randers metrics on homogeneous riemannian manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15) :4353-4360
[5]  
Kobayashi S., 1969, Foundation of differential geometry, VII
[6]  
Nomizu K., 1954, AM J MATH, V76, P33, DOI [10.2307/2372398, DOI 10.2307/2372398]
[7]  
Szabo Z. I., 1981, TENSOR, V35, P25