All-Solid-State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet-Based Electrolyte

被引:146
作者
Chen, Shaojie [1 ]
Zhang, Jingxuan [1 ]
Nie, Lu [1 ]
Hu, Xiangchen [1 ]
Huang, Yuanqi [1 ]
Yu, Yi [1 ]
Liu, Wei [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
关键词
interface layers; lithium metal anodes; negative; positive electrode capacity ratio; solid electrolytes; specific energy; HIGH-ENERGY; ELECTROCHEMICAL PERFORMANCE; INTERFACE MODIFICATION; ION BATTERIES; POUCH CELLS; STABILITY; OXIDE; RESISTANCE; PHASE;
D O I
10.1002/adma.202002325
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high-energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium-metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all-solid-state lithium-metal battery (ASSLMB) based on a garnet-oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long-term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high-voltage or high mass-loading cathode. This study sheds light on the practical high-energy all-solid-state batteries under the constrained condition of a limited Li metal anode.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [42] Li metal anode interface in sulfide-based all-solid-state Li batteries
    Li, Jingyan
    Luo, Jiayao
    Li, Xiang
    Fu, Yongzhu
    Zhu, Jinhui
    Zhuang, Xiaodong
    ECOMAT, 2023, 5 (08)
  • [43] Sulfide-based solid electrolyte and electrode membranes for all-solid-state lithium batteries
    Chen, Zhenying
    Hou, Junbo
    Yang, Min
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [44] Interface engineering of sodium metal anode for all-solid-state sodium batteries
    Tang, Xianjian
    Han, Weibo
    Zhang, Yue
    Liu, Shan
    JOURNAL OF POWER SOURCES, 2024, 623
  • [45] Growth Process and Removal of Interface Contaminants for Garnet-Based Solid-State Lithium Metal Batteries
    Li, Jie
    Gong, Zhinan
    Xie, Wenfei
    Yu, Shiyu
    Wei, Yaqing
    Li, De
    Yang, Liang
    Chen, Daming
    Li, Yuanxun
    Chen, Yong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (24) : 12432 - 12441
  • [46] Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review
    Pang, Yuepeng
    Pan, Jinyu
    Yang, Junhe
    Zheng, Shiyou
    Wang, Chunsheng
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (02) : 169 - 193
  • [47] Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries
    Nolan, Adelaide M.
    Wachsman, Eric D.
    Mo, Yifei
    ENERGY STORAGE MATERIALS, 2021, 41 : 571 - 580
  • [48] Interfacial engineering for high-performance garnet-based solid-state lithium batteries
    Wang, Lingchen
    Wu, Jiaxin
    Bao, Chengshuai
    You, Zichang
    Lu, Yan
    Wen, Zhaoyin
    SUSMAT, 2024, 4 (01): : 72 - 105
  • [49] All-Solid-State Garnet-Based Lithium Batteries at Work-In Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanism
    Hou, An-Yuan
    Huang, Chih-Yang
    Tsai, Chih-Long
    Huang, Chun-Wei
    Schierholz, Roland
    Lo, Hung-Yang
    Tempel, Hermann
    Kungl, Hans
    Eichel, Ruediger-A.
    Chang, Jeng-Kuei
    Wu, Wen-Wei
    ADVANCED SCIENCE, 2023, 10 (05)
  • [50] Interface stability of cathode for all-solid-state lithium batteries based on sulfide electrolyte: Current insights and future directions
    Gao, Xin
    Zhen, Zheng
    Chen, Jiayi
    Xu, Runjing
    Zeng, Xiantai
    Su, Jinliang
    Chen, Ya
    Chen, Xiaodong
    Cui, Lifeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 491