All-Solid-State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet-Based Electrolyte

被引:155
作者
Chen, Shaojie [1 ]
Zhang, Jingxuan [1 ]
Nie, Lu [1 ]
Hu, Xiangchen [1 ]
Huang, Yuanqi [1 ]
Yu, Yi [1 ]
Liu, Wei [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
关键词
interface layers; lithium metal anodes; negative; positive electrode capacity ratio; solid electrolytes; specific energy; HIGH-ENERGY; ELECTROCHEMICAL PERFORMANCE; INTERFACE MODIFICATION; ION BATTERIES; POUCH CELLS; STABILITY; OXIDE; RESISTANCE; PHASE;
D O I
10.1002/adma.202002325
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high-energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium-metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all-solid-state lithium-metal battery (ASSLMB) based on a garnet-oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long-term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high-voltage or high mass-loading cathode. This study sheds light on the practical high-energy all-solid-state batteries under the constrained condition of a limited Li metal anode.
引用
收藏
页数:10
相关论文
共 70 条
[21]   Self-Assembled Monolayer Enables Slurry-Coating of Li Anode [J].
Kang, Tuo ;
Wang, Yalong ;
Guo, Feng ;
Liu, Chenghao ;
Zhao, Jianghui ;
Yang, Jin ;
Lin, Hongzhen ;
Qu, Yejun ;
Shen, Yanbin ;
Lu, Wei ;
Chen, Liwei .
ACS CENTRAL SCIENCE, 2019, 5 (03) :468-476
[22]   In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery [J].
Kato, Takehisa ;
Hamanaka, Tadashi ;
Yamamoto, Kazuo ;
Hirayama, Tsukasa ;
Sagane, Fumihiro ;
Motoyama, Munekazu ;
Iriyama, Yasutoshi .
JOURNAL OF POWER SOURCES, 2014, 260 :292-298
[23]   Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries [J].
Kim, Mun Sek ;
Ryu, Ji-Hyun ;
Deepika ;
Lim, Young Rok ;
Nah, In Wook ;
Lee, Kwang-Ryeol ;
Archer, Lynden A. ;
Cho, Won Il .
NATURE ENERGY, 2018, 3 (10) :889-898
[24]   A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature [J].
Kimura, Kento ;
Yajima, Mari ;
Tominaga, Yoichi .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 66 :46-48
[25]   Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes [J].
Krauskopf, Thorben ;
Dippel, Rabea ;
Hartmann, Hannah ;
Peppler, Klaus ;
Mogwitz, Boris ;
Richter, Felix H. ;
Zeier, Wolfgang G. ;
Janek, Juergen .
JOULE, 2019, 3 (08) :2030-2049
[26]   High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes (vol 171, pg 568, 2020) [J].
Lee, Yong-Gun ;
Fujiki, Satoshi ;
Jung, Changhoon ;
Suzuki, Naoki ;
Yashiro, Nobuyoshi ;
Omoda, Ryo ;
Ko, Dong-Su ;
Shiratsuchi, Tomoyuki ;
Sugimoto, Toshinori ;
Ryu, Saebom ;
Ku, Jun Hwan ;
Watanabe, Taku ;
Park, Youngsin ;
Aihara, Yuichi ;
Im, Dongmin ;
Han, In Taek .
NATURE ENERGY, 2020, 5 (04) :348-348
[27]   Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries [J].
Li, Yutao ;
Chen, Xi ;
Dolocan, Andrei ;
Cui, Zhiming ;
Xin, Sen ;
Xue, Leigang ;
Xu, Henghui ;
Park, Kyusung ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (20) :6448-6455
[28]  
Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/NNANO.2017.16, 10.1038/nnano.2017.16]
[29]  
Lin DC, 2016, NAT NANOTECHNOL, V11, P626, DOI [10.1038/nnano.2016.32, 10.1038/NNANO.2016.32]
[30]   Pathways for practical high-energy long-cycling lithium metal batteries [J].
Liu, Jun ;
Bao, Zhenan ;
Cui, Yi ;
Dufek, Eric J. ;
Goodenough, John B. ;
Khalifah, Peter ;
Li, Qiuyan ;
Liaw, Bor Yann ;
Liu, Ping ;
Manthiram, Arumugam ;
Meng, Y. Shirley ;
Subramanian, Venkat R. ;
Toney, Michael F. ;
Viswanathan, Vilayanur V. ;
Whittingham, M. Stanley ;
Xiao, Jie ;
Xu, Wu ;
Yang, Jihui ;
Yang, Xiao-Qing ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (03) :180-186