Manipulating two-dimensional solitons in inhomogeneous nonlinear Schrodinger equation with power-law nonlinearity under PT-symmetric Rosen-Morse and hyperbolic Scarff-II potentials

被引:14
作者
Manikandan, K. [1 ]
Sudharsan, J. B. [1 ]
机构
[1] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai 600069, Tamil Nadu, India
来源
OPTIK | 2022年 / 256卷
关键词
Inhomogeneous nonlinear Schrö dinger  equation; Optical soliton; Power-law nonlinearity; PT-symmetric potential; Similarity transformation; Optical waveguides; OPTICAL SOLITONS; SPATIAL SOLITONS; QUASI-SOLITON; PROPAGATION; DISPERSION; KERR;
D O I
10.1016/j.ijleo.2022.168703
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We construct two-dimensional soliton solutions for the inhomogeneous nonlinear Schrodinger (NLS) equation with power-law nonlinearity in two different types of parity-time (PT )-symmetric potentials, namely Rosen-Morse and hyperbolic Scarff-II potentials, through a similarity transformation. In each case, following three different kinds of dispersion parameters are considered: (i) exponential, (ii) periodic, and (iii) hyperbolic. We investigate the impact on the dynamical characteristics of solitons by varying the strengths of the inhomogeneity parameter. We also analyse the intensity variations of solitons at different propagation distances for three distinct dispersion profiles. Further, we observe that the intensity distribution of solitons stretches in space and that the width of it increases as the value of the power-law nonlinearity parameter increases. Our findings reveal that the obtained soliton solutions can be managed with the help of the strengths of both PT-symmetric potentials and dispersion parameters.
引用
收藏
页数:11
相关论文
共 63 条
[1]  
Agrawal G, 2019, Nonlinear Fiber Opt.
[2]  
[Anonymous], 2006, INTRO NONKERR LAW OP
[3]   On optical solitons of the Schrodinger-Hirota equation with power law nonlinearity in optical fibers [J].
Aslan, Ebru Cavlak ;
Tchier, Fairouz ;
Inc, Mustafa .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :48-55
[4]   Nonlinear dynamics of nonautonomous solitons in external potentials expressed by time-varying power series: exactly solvable higher-order nonlinear and dispersive models [J].
Belyaeva, T. L. ;
Serkin, V. N. .
NONLINEAR DYNAMICS, 2022, 107 (01) :1153-1162
[5]   Nonautonomous solitons of the novel nonlinear Schrodinger equation: Self-compression, amplification, and the bound state decay in external potentials [J].
Belyaeva, T. L. ;
Aguero, M. A. ;
Serkin, V. N. .
OPTIK, 2021, 244
[6]   Parton-like soliton structures in nonlinear coherent states [J].
Belyaeva, T. L. ;
Kovachev, L. M. ;
Serkin, V. N. .
OPTIK, 2020, 210
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]  
Biswas A, 2010, NONLINEAR PHYS SCI, P1, DOI 10.1007/978-3-642-10220-2
[9]   Solitons supported by singular spatial modulation of the Kerr nonlinearity [J].
Borovkova, Olga V. ;
Lobanov, Valery E. ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2012, 85 (02)
[10]   Dynamic behaviors for a perturbed nonlinear Schrodinger equation with the power-law nonlinearity in a non-Kerr medium [J].
Chai, Jun ;
Tian, Bo ;
Zhen, Hui-Ling ;
Sun, Wen-Rong ;
Liu, De-Yin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 :93-103