A combinatorial approach to the double cosets of the symmetric group with respect to Young subgroups

被引:7
作者
Jones, AR [1 ]
机构
[1] UNIV WALES,DEPT MATH,ABERYSTWYTH SY23 3BZ,DYFED,WALES
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/eujc.1996.0056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Combinatorial methods are employed to study the double cosets of the symmetric group S-n with respect to Young subgroups H and K. The current paper develops a correspondence between these double cosets and certain lists of integers. This approach leads naturally to an algorithm for computing the number of (H, K)-double cosets of S-n. (C) 1996 Academic Press Limited
引用
收藏
页码:647 / 655
页数:9
相关论文
共 7 条
[1]  
Andrews G.E., 1976, Encyclopedia of Mathematics and its Applications, V2
[2]  
James G. D., 1978, REPRESENTATION THEOR, V682
[3]  
James G. D, 1981, REPRESENTATION THEOR, V16
[4]  
Kerber A., 1991, ALGEBRAIC COMBINATOR
[5]  
Sagan B., 1991, SYMMETRIC GROUP REPR
[6]   ON WEIGHT SPACES OF POLYNOMIAL REPRESENTATIONS OF THE GENERAL LINEAR GROUP AS LINEAR CODES [J].
ZIMMERMANN, KH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 67 (01) :1-22
[7]  
[No title captured]