Electrostatic interactions of domain III stabilize the inactive conformation of μ-calpain

被引:9
作者
Fernández-Montalván, A
Assfalg-Machleidt, I
Pfeiler, D
Fritz, H
Jochum, M
Machleidt, W
机构
[1] Univ Munich, Adolf Butenandt Inst, D-80336 Munich, Germany
[2] Univ Munich, Chirurg Klin, Klin Chem & Klin Biochem Abt, D-80336 Munich, Germany
关键词
acidic loop; basic loop; Ca2+ requirement; electrostatic switch; domain III; mu-calpain;
D O I
10.1042/BJ20040731
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ubiquitous mu- and m-calpains are Ca2+-dependent cysteine proteases. They are activated via rearrangement of the catalytic domain II induced by cooperative binding of Ca2+ to several sites of the molecule. Based on the crystallographic structures, a cluster of acidic residues in domain III, the acidic loop, has been proposed to function as part of an electrostatic switch in the activation process. Experimental support for this hypothesis was obtained by site-directed mutagenesis of recombinant human g-calpain expressed with the baculovirus system in insect cells. Replacing the acidic residues of the loop individually with alanine resulted in an up to 7-fold reduction of the half-maximal Ca2+ concentration required for conformational changes (probed with 2-p-toluidinylnapthalene-6-sulphonate fluorescence) and for enzymic activity. Along with structural information, the contribution of individual acidic residues to the Ca2+ requirement for activation revealed that interactions of the acidic loop with basic residues in the catalytic subdomain IIb and in the pre-transducer region of domain III stabilize the structure of inactive mu-calpain. Disruption of these electrostatic interactions makes the molecule more flexible and increases its Ca2+ sensitivity. It is proposed that the acidic loop and the opposing basic loop of domain III constitute a double-headed electrostatic switch controlling the assembly of the catalytic domain.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 44 条
[1]   Contribution of distinct structural elements to activation of calpain by Ca2+ ions [J].
Alexa, A ;
Bozóky, Z ;
Farkas, A ;
Tompa, P ;
Friedrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20118-20126
[2]   Purification of active calpain by affinity chromatography on an immobilized peptide inhibitor [J].
Anagli, J ;
Vilei, EM ;
Molinari, M ;
Calderara, S ;
Carafoli, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :948-954
[3]   Autolysis parallels activation of mu-calpain [J].
Baki, A ;
Tompa, P ;
Alexa, A ;
Molnar, O ;
Friedrich, P .
BIOCHEMICAL JOURNAL, 1996, 318 :897-901
[4]  
Crawford C., 1990, INTRACELLULAR CALCIU, P75
[5]   Roles of individual EF-hands in the activation of m-calpain by calcium [J].
Dutt, P ;
Arthur, JSC ;
Grochulski, P ;
Cygler, M ;
Elce, JS .
BIOCHEMICAL JOURNAL, 2000, 348 :37-43
[6]   Origins of the difference in Ca2+ requirement for activation of μ- and m-calpain [J].
Dutt, P ;
Spriggs, CN ;
Davies, PL ;
Jia, ZC ;
Elce, JS .
BIOCHEMICAL JOURNAL, 2002, 367 (01) :263-269
[7]   The effects of truncations of the small subunit on m-calpain activity and heterodimer formation [J].
Elce, JS ;
Davies, PL ;
Hegadorn, C ;
Maurice, DH ;
Arthur, JSC .
BIOCHEMICAL JOURNAL, 1997, 326 :31-38
[8]  
ELCE JS, 1999, CALPAIN PHARM TOXICO, P51
[9]   Human μ-calpain:: Simple isolation from erythrocytes and characterization of autolysis fragments [J].
Gabrijelcic-Geiger, D ;
Mentele, R ;
Meisel, B ;
Hinz, H ;
Assfalg-Machleidt, L ;
Machleidt, W ;
Möller, A ;
Auerswald, EA .
BIOLOGICAL CHEMISTRY, 2001, 382 (12) :1733-1737
[10]   Subcellular localization and in vivo subunit interactions of ubiquitous μ-calpain [J].
Gil-Parrado, S ;
Popp, O ;
Knoch, TA ;
Zahler, S ;
Bestvater, F ;
Felgenträger, M ;
Holloschi, A ;
Fernández-Montalván, A ;
Auerswald, EA ;
Fritz, H ;
Fuentes-Prior, P ;
Machleidt, W ;
Spiess, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (18) :16336-16346