Intersection theory on toric varieties

被引:120
作者
Fulton, W [1 ]
Sturmfels, B [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
关键词
D O I
10.1016/0040-9383(96)00016-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The operational Chow cohomology classes of a complete toric variety are identified with certain functions, called Minkowski weights, on the corresponding fan. The natural product of Chow cohomology classes makes the Minkowski weights into a commutative ring; the product is computed by a displacement in the lattice, which corresponds to a deformation in the toric variety. We show that, with rational coefficients, this ring embeds in McMullen's polytope algebra, and that the polytope algebra is the direct limit of these Chow rings, over all compactifications of a given torus. In the nonsingular case, the Minkowski weight corresponding to the Todd class is related to a certain Ehrhart polynomial. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:335 / 353
页数:19
相关论文
共 17 条
[1]  
[Anonymous], MEMOIRS AM MATH SOC
[2]  
BATYREV V, 1986, ALGEBRA LOGIC NUMBER, V3, P20
[3]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[4]  
Danilov V.I., 1978, Uspekhi Mat. Nauk, V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
[5]   TORUS ORBITS IN G/P [J].
FLASCHKA, H ;
HAINE, L .
PACIFIC JOURNAL OF MATHEMATICS, 1991, 149 (02) :251-292
[6]  
Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8
[7]  
FULTON W., 1995, J ALGEBRAIC GEOM, V4, P181
[8]  
Fulton W., 1993, INTRO TORIC VARIETIE
[9]   GEOMETRY IN GRASSMANNIANS AND A GENERALIZATION OF THE DILOGARITHM [J].
GELFAND, IM ;
MACPHERSON, RD .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :279-312
[10]   QUOTIENTS OF TORIC VARIETIES [J].
KAPRANOV, MM ;
STURMFELS, B ;
ZELEVINSKY, AV .
MATHEMATISCHE ANNALEN, 1991, 290 (04) :643-655