Partial volume-aware assessment of multiple sclerosis lesions

被引:14
作者
Fartaria, Mario Joao [1 ,2 ,3 ,4 ]
Todea, Alexandra [5 ]
Kober, Tobias [1 ,2 ,3 ,4 ]
O'brien, Kieran [6 ,7 ]
Krueger, Gunnar [8 ]
Meuli, Reto [2 ,3 ]
Granziera, Cristina [9 ,10 ,11 ,12 ,13 ]
Roche, Alexis [1 ,2 ,3 ,4 ]
Cuadra, Meritxell Bach [2 ,3 ,4 ,14 ]
机构
[1] Siemens Healthcare AG, Adv Clin Imaging Technol HC CMEA SUI DI PI, Lausanne, Switzerland
[2] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS 5, Lausanne, Switzerland
[5] Pourtales Hosp, Dept Radiol, Neuchatel, Switzerland
[6] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld, Australia
[7] Siemens Healthcare Pty Ltd, Brisbane, Qld, Australia
[8] Siemens Healthcare Ltd, Zurich, Switzerland
[9] Univ Hosp Basel, Neurol Clin & Policlin, Dept Med, Basel, Switzerland
[10] Univ Hosp Basel, Neurol Clin & Policlin, Dept Clin Res, Basel, Switzerland
[11] Univ Hosp Basel, Neurol Clin & Policlin, Dept Biomed Engn, Basel, Switzerland
[12] Univ Basel, Basel, Switzerland
[13] Univ Hosp Basel, Dept Med & Biomed Engn, Translat Imaging Neurol ThINK Basel, Basel, Switzerland
[14] CIBM, MIAL, Lausanne, Switzerland
关键词
Partial volume; Multiple sclerosis; MRI; Lesion segmentation; WHITE-MATTER LESIONS; AUTOMATIC SEGMENTATION; TISSUE CLASSIFICATION; MRI; CRITERIA; IMAGES;
D O I
10.1016/j.nicl.2018.01.011
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
White-matter lesion count and volume estimation are key to the diagnosis and monitoring of multiple sclerosis (MS). Automated MS lesion segmentation methods that have been proposed in the past 20 years reach their limits when applied to patients in early disease stages characterized by low lesion load and small lesions. We propose an algorithm to automatically assess MS lesion load (number and volume) while taking into account the mixing of healthy and lesional tissue in the image voxels due to partial volume effects. The proposed method works on 3D MPRAGE and 3D FLAIR images as obtained from current routine MS clinical protocols. The method was evaluated and compared with manual segmentation on a cohort of 39 early-stage MS patients with low disability, and showed higher Dice similarity coefficients (median DSC=0.55) and higher detection rate (median DR=61%) than two widely used methods (median DSC=0.50, median DR < 45%) for automated MS lesion segmentation. We argue that this is due to the higher performance in segmentation of small lesions, which are inherently prone to partial volume effects.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 49 条
  • [1] Probabilistic segmentation of white lesions in MR imaging
    Anbeek, P
    Vincken, KL
    van Osch, MJP
    Bisschops, RHC
    van der Grond, J
    [J]. NEUROIMAGE, 2004, 21 (03) : 1037 - 1044
  • [2] [Anonymous], 2008, MIDAS J MS LES SEGM
  • [3] [Anonymous], 2008, MIDAS J
  • [4] Computing average shaped tissue probability templates
    Ashburner, John
    Friston, Karl J.
    [J]. NEUROIMAGE, 2009, 45 (02) : 333 - 341
  • [5] Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis
    Bonnier, Guillaume
    Roche, Alexis
    Romascano, David
    Simioni, Samanta
    Meskaldji, Djalel Eddine
    Rotzinger, David
    Lin, Ying-Chia
    Menegaz, Gloria
    Schluep, Myriam
    Du Pasquier, Renaud
    Sumpf, Tilman Johannes
    Frahm, Jens
    Thiran, Jean-Philippe
    Krueger, Gunnar
    Granziera, Cristina
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [6] Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Tang, Lisa Y. W.
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1229 - 1239
  • [7] Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding
    Cabezas, Mariano
    Oliver, Arnau
    Roura, Eloy
    Freixenet, Jordi
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) : 147 - 161
  • [8] PARTIAL VOLUME TISSUE CLASSIFICATION OF MULTICHANNEL MAGNETIC-RESONANCE IMAGES - A MIXEL MODEL
    CHOI, HS
    HAYNOR, DR
    KIM, YM
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1991, 10 (03) : 395 - 407
  • [9] Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
    Cuadra, MB
    Cammoun, L
    Butz, T
    Cuisenaire, O
    Thiran, JP
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (12) : 1548 - 1565
  • [10] A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis
    Datta, Sushmita
    Narayana, Ponnada A.
    [J]. NEUROIMAGE-CLINICAL, 2013, 2 : 184 - 196