Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes

被引:761
作者
Kim, Young-Hoon [1 ,2 ]
Kim, Sungjin [1 ,2 ]
Kakekhani, Arvin [3 ]
Park, Jinwoo [1 ,2 ]
Park, Jaehyeok [4 ]
Lee, Yong-Hee [1 ]
Xu, Hengxing [5 ]
Nagane, Satyawan [6 ]
Wexler, Robert B. [3 ]
Kim, Dong-Hyeok [1 ,2 ]
Jo, Seung Hyeon [1 ,2 ]
Martinez-Sarti, Laura [7 ]
Tan, Peng [3 ,8 ]
Sadhanala, Aditya [6 ,9 ]
Park, Gyeong-Su [1 ]
Kim, Young-Woon [1 ]
Hu, Bin [5 ]
Bolink, Henk J. [7 ]
Yoo, Seunghyup [4 ]
Friend, Richard H. [6 ]
Rappe, Andrew M. [3 ]
Lee, Tae-Woo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Engn Res, Res Inst Adv Mat,Nano Syst Inst, Seoul, South Korea
[3] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[4] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon, South Korea
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Univ Cambridge, Cavendish Lab, Cambridge, England
[7] Univ Valencia, Inst Ciencia Mol, Paterna, Spain
[8] Harbin Inst Technol, Dept Phys, Harbin, Peoples R China
[9] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
HALIDE PEROVSKITES; STABILIZATION; CH3NH3PBBR3; BINDING;
D O I
10.1038/s41566-020-00732-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to the surface and stabilizes the undercoordinated sites. Furthermore, a surface-stabilizing 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene was applied as a bromide vacancy healing agent. The result is highly efficient PNC-based light-emitting diodes that have current efficiency of 108 cd A(-1) (external quantum efficiency of 23.4%), which rises to 205 cd A(-1) (external quantum efficiency of 45.5%) with a hemispherical lens.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 50 条
[1]   Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)3]+-based hybrid perovskite solar cells [J].
Banerjee, Amitava ;
Chakraborty, Sudip ;
Ahuja, Rajeev .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) :18561-18568
[2]   Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J].
Cao, Yu ;
Wang, Nana ;
Tian, He ;
Guo, Jingshu ;
Wei, Yingqiang ;
Chen, Hong ;
Miao, Yanfeng ;
Zou, Wei ;
Pan, Kang ;
He, Yarong ;
Cao, Hui ;
Ke, You ;
Xu, Mengmeng ;
Wang, Ying ;
Yang, Ming ;
Du, Kai ;
Fu, Zewu ;
Kong, Decheng ;
Dai, Daoxin ;
Jin, Yizheng ;
Li, Gongqiang ;
Li, Hai ;
Peng, Qiming ;
Wang, Jianpu ;
Huang, Wei .
NATURE, 2018, 562 (7726) :249-+
[3]   High-Efficiency Formamidinium Lead Bromide Perovskite Nanocrystal-Based Light-Emitting Diodes Fabricated via a Surface Defect Self-Passivation Strategy [J].
Chen, Hongting ;
Fan, Lianwei ;
Zhang, Rui ;
Bao, Chunxiong ;
Zhao, Haifeng ;
Xiang, Wei ;
Liu, Wei ;
Niu, Guangda ;
Guo, Runda ;
Zhang, Louwen ;
Wang, Lei .
ADVANCED OPTICAL MATERIALS, 2020, 8 (06)
[4]   Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J].
Chiba, Takayuki ;
Hayashi, Yukihiro ;
Ebe, Hinako ;
Hoshi, Keigo ;
Sato, Jun ;
Sato, Shugo ;
Pu, Yong-Jin ;
Ohisa, Satoru ;
Kido, Junji .
NATURE PHOTONICS, 2018, 12 (11) :681-+
[5]   Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J].
Cho, Himchan ;
Jeong, Su-Hun ;
Park, Min-Ho ;
Kim, Young-Hoon ;
Wolf, Christoph ;
Lee, Chang-Lyoul ;
Heo, Jin Hyuck ;
Sadhanala, Aditya ;
Myoung, NoSoung ;
Yoo, Seunghyup ;
Im, Sang Hyuk ;
Friend, Richard H. ;
Lee, Tae-Woo .
SCIENCE, 2015, 350 (6265) :1222-1225
[6]   NCIPLOT: A Program for Plotting Noncovalent Interaction Regions [J].
Contreras-Garcia, Julia ;
Johnson, Erin R. ;
Keinan, Shahar ;
Chaudret, Robin ;
Piquemal, Jean-Philip ;
Beratan, David N. ;
Yang, Weitao .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) :625-632
[7]   Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals [J].
De Roo, Jonathan ;
Ibanez, Maria ;
Geiregat, Pieter ;
Nedelcu, Georgian ;
Walravens, Willem ;
Maes, Jorick ;
Martins, Jose C. ;
Van Driessche, Isabel ;
Koyalenko, Maksym V. ;
Hens, Zeger .
ACS NANO, 2016, 10 (02) :2071-2081
[8]   Octahedral connectivity and its role in determining the phase stabilities and electronic structures of low-dimensional, perovskite-related iodoplumbates [J].
Deng, Zeyu ;
Kieslich, Gregor ;
Bristowe, Paul D. ;
Cheetham, Anthony K. ;
Sun, Shijing .
APL MATERIALS, 2018, 6 (11)
[9]   Pseudopotentials for high-throughput DFT calculations [J].
Garrity, Kevin F. ;
Bennett, Joseph W. ;
Rabe, Karin M. ;
Vanderbilt, David .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 :446-452
[10]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)