Improved Bayesian regularisation using neural networks based on feature selection for software defect prediction

被引:5
|
作者
Jayanthi, R. [1 ]
Florence, M. Lilly [2 ]
机构
[1] PESIT BSC, MCA Dept, Bangalore, Karnataka, India
[2] Adhiyamaan Engn Coll, Dept Comp Sci & Engn, Hosur, Tamil Nadu, India
关键词
defect prediction model; machine learning techniques; software defect prediction; software metrics; gradient descent optimisation; gradient-based approach; feature subset selection; cross entropy error function; adaptive computation process; FAULT;
D O I
10.1504/IJCAT.2019.100297
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Demand for software-based applications has grown drastically in various real-time applications. However, software testing schemes have been developed which include manual and automatic testing. Manual testing requires human effort and chances of error may still affect the quality of software. To overcome this issue, automatic software testing techniques based on machine learning techniques have been developed. In this work, we focus on the machine learning scheme for early prediction of software defects using Levenberg-Marquardt algorithm (LM), Back Propagation (BP) and Bayesian Regularisation (BR) techniques. Bayesian regularisation achieves better performance in terms of bug prediction. However, this performance can be enhanced further. Hence, we developed a novel approach for attribute selection-based feature selection technique to improve the performance of BR classification. An extensive study is carried out with the PROMISE repository where we considered KC1 and JM1 datasets. Experimental study shows that the proposed approach achieves better performance in predicting the defects in software.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 50 条
  • [1] Improved Approach for Software Defect Prediction using Artificial Neural Networks
    Sethi, Tanvi
    Gagandeep
    2016 5TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO), 2016, : 480 - 485
  • [2] Software Defect Prediction Scheme Based on Feature Selection
    Wang, Pei
    Jin, Cong
    Jin, Shu-Wei
    2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 477 - 480
  • [3] Software Defect Prediction Using Augmented Bayesian Networks
    Muthukumaran, K.
    Srinivas, Suri
    Malapati, Aruna
    Neti, Lalita Bhanu Murthy
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 279 - 293
  • [4] ELM and KELM based software defect prediction using feature selection techniques
    Arora, Ishani
    Saha, Anju
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (05) : 1025 - 1045
  • [5] Genetic Feature Selection for Software Defect Prediction
    Wahono, Romi Satria
    Herman, Nanna Suryana
    ADVANCED SCIENCE LETTERS, 2014, 20 (01) : 239 - 244
  • [6] Software defect prediction techniques using metrics based on neural network classifier
    Jayanthi, R.
    Florence, Lilly
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 77 - 88
  • [7] Software defect prediction techniques using metrics based on neural network classifier
    R. Jayanthi
    Lilly Florence
    Cluster Computing, 2019, 22 : 77 - 88
  • [8] A many objective based feature selection model for software defect prediction
    Mao, Qi
    Zhang, Jingbo
    Zhao, Tianhao
    Cai, Xingjuan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (19)
  • [9] A feature selection approach based on a similarity measure for software defect prediction
    Qiao Yu
    Shu-juan Jiang
    Rong-cun Wang
    Hong-yang Wang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1744 - 1753
  • [10] A feature selection approach based on a similarity measure for software defect prediction
    Yu, Qiao
    Jiang, Shu-juan
    Wang, Rong-cun
    Wang, Hong-yang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (11) : 1744 - 1753