Electrochemical degradation of clofibric acid in water by anodic oxidation Comparative study with platinum and boron-doped diamond electrodes

被引:134
|
作者
Sires, Ignasi [1 ]
Cabot, Pere Lluis [1 ]
Centellas, Francesc [1 ]
Garrido, Jose Antonio [1 ]
Rodriguez, Rosa Maria [1 ]
Arias, Conchita [1 ]
Brillas, Enric [1 ]
机构
[1] Univ Barcelona, Dept Quim Fis, Fac Quim, Lab Ciencia & Tecnol Electquim Mat, E-08028 Barcelona, Spain
关键词
clofibric acid; anodic oxidation; platinum anode; boron-doped diamond anode; oxidation products;
D O I
10.1016/j.electacta.2006.03.075
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ((OH)-O-center dot). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl-2. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with (OH)-O-center dot. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquitione, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [1] Electrochemical degradation of PNP at boron-doped diamond and platinum electrodes
    Zhang, Yanrong
    Yang, Nan
    Murugananthan, Muthu
    Yoshihara, Sachio
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 244 : 295 - 302
  • [2] Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes
    Liu, Lei
    Zhao, Guohua
    Wu, Meifen
    Lei, Yanzhu
    Geng, Rong
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 168 (01) : 179 - 186
  • [3] Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes
    Montilla, F
    Michaud, PA
    Morallón, E
    Vázquez, JL
    Comninellis, C
    ELECTROCHIMICA ACTA, 2002, 47 (21) : 3509 - 3513
  • [4] Anodic oxidation of textile wastewaters on boron-doped diamond electrodes
    Abdessamad, NourElHouda
    Akrout, Hanene
    Bousselmi, Latifa
    ENVIRONMENTAL TECHNOLOGY, 2015, 36 (24) : 3201 - 3209
  • [5] Anodic oxidation of 4-chlorophenoxyacetic acid on synthetic boron-doped diamond electrodes
    Boye, B
    Michaud, PA
    Marselli, B
    Dieng, MM
    Brillas, E
    Comninellis, C
    NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY, 2002, 12 (02): : 63 - 72
  • [6] Deactivation of complex formation by anodic oxidation on boron-doped diamond electrodes
    Kodama, Daiyu
    Tamura, Ayato
    Hattori, Takahiro
    Sakurai, Masatoshi
    Kamiya, Takehiko
    Maeda, Yasuhisa
    Shimomura, Masaru
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [7] Anodic oxidation of 2-naphthol at boron-doped diamond electrodes
    Panizza, M
    Michaud, PA
    Cerisola, G
    Comninellis, C
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 507 (1-2) : 206 - 214
  • [8] Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode
    Boye, B
    Brillas, E
    Marselli, B
    Michaud, PA
    Comninellis, C
    Farnia, G
    Sandonà, G
    ELECTROCHIMICA ACTA, 2006, 51 (14) : 2872 - 2880
  • [9] Electrochemical Oxidation of Trichloroethylene Using Boron-Doped Diamond Film Electrodes
    Carter, Kimberly E.
    Farrell, James
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (21) : 8350 - 8354
  • [10] Advanced Electrochemical Oxidation of Methyl Parathion at Boron-Doped Diamond Electrodes
    Campos-Gonzalez, Eulalio
    Frontana-Uribe, Bernardo A.
    Vasquez-Medrano, Ruben
    Macias-Bravo, Samuel
    Ibanez, Jorge G.
    JOURNAL OF THE MEXICAN CHEMICAL SOCIETY, 2014, 58 (03) : 315 - 321