共 50 条
Broadcast Coded Slotted ALOHA: A Finite Frame Length Analysis
被引:39
|作者:
Ivanov, Mikhail
[1
]
Brannstrom, Fredrik
[2
]
Graell i Amat, Alexandre
[2
]
Popovski, Petar
[3
]
机构:
[1] Qamcom Res & Technol AB, SE-41285 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[3] Aalborg Univ, Dept Elect Syst, DK-9220 Aalborg, Denmark
基金:
欧洲研究理事会;
瑞典研究理事会;
关键词:
All-to-all broadcast;
coded slotted ALOHA;
error floor;
finite length analysis;
interference cancelation;
packet loss rate;
random access;
RANDOM-ACCESS SCHEME;
PARITY-CHECK CODES;
ERASURE CHANNEL;
MULTIPLE-ACCESS;
DIVERSITY;
COMMUNICATION;
NETWORKS;
D O I:
10.1109/TCOMM.2016.2625253
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B-CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B-CSA is able to support a much larger number of users than CSMA with the same reliability.
引用
收藏
页码:651 / 662
页数:12
相关论文