A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature

被引:14
作者
Engoulatov, A. [1 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
关键词
Ricci curvature; diffusion process; heat kernel; gradient estimate;
D O I
10.1016/j.jfa.2006.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a gradient estimate for the logarithm of the heat kernel on a Riemannian manifold with Ricci curvature bounded from below. The bound is universal in the sense that it depends only on the lower bound of Ricci curvature, dimension and diameter of the manifold. Imposing a more restrictive non-collapsing condition allows one to sharpen this estimate for the values of time parameter close to zero. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:518 / 529
页数:12
相关论文
共 7 条
[1]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[2]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[3]  
Hsu E., 2002, GRAD STUD MATH, V38
[4]   Estimates of derivatives of the heat kernel on a compact Riemannian manifold [J].
Hsu, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) :3739-3744
[5]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[6]  
PETERSEN P, 1995, INDIANA U MATH J, V44, P451
[7]   Upper bounds on derivatives of the logarithm of the heat kernel [J].
Stroock, DW ;
Turetsky, J .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :669-685