Intercomparison of Data-Driven and Learning-Based Interpolations of Along-Track Nadir and Wide-Swath SWOT Altimetry Observations

被引:19
作者
Beauchamp, Maxime [1 ]
Fablet, Ronan [1 ]
Ubelmann, Clement [2 ]
Ballarotta, Maxime [3 ]
Chapron, Bertrand [4 ]
机构
[1] IMT Atlantique Bretagne Pays de la Loire, Technopole Brest Iroise CS 83818, F-29238 Brest 03, France
[2] Ocean Next, F-38000 Grenoble, France
[3] Collecte Localisat Satellites CLS, F-31520 Ramonville St Agne, France
[4] IFREMER, F-29280 Plouzane, France
关键词
data-driven and learning-based approaches; interpolation; benchmarking; Nadir and SWOT altimetric satellite data; sea surface height (SSH);
D O I
10.3390/rs12223806
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Over the last few years, a very active field of research has aimed at exploring new data-driven and learning-based methodologies to propose computationally efficient strategies able to benefit from the large amount of observational remote sensing and numerical simulations for the reconstruction, interpolation and prediction of high-resolution derived products of geophysical fields. In this paper, we investigate how they might help to solve for the oversmoothing of the state-of-the-art optimal interpolation (OI) techniques in the reconstruction of sea surface height (SSH) spatio-temporal fields. We focus on two small 10 degrees x10 degrees GULFSTREAM and 8 degrees x10 degrees OSMOSIS regions, part of the North Atlantic basin: the GULFSTREAM area is mainly driven by energetic mesoscale dynamics, while OSMOSIS is less energetic but with more noticeable small spatial patterns. Based on observation system simulation experiments (OSSE), we used a NATL60 high resolution deterministic ocean simulation of the North Atlantic to generate two types of pseudo-altimetric observational dataset: along-track nadir data for the current capabilities of the observation system and wide-swath SWOT data in the context of the upcoming SWOT (Surface Water Ocean Topography) mission. We briefly introduce the analog data assimilation (AnDA), an up-to-date version of the DINEOF algorithm, and a new neural networks-based end-to-end learning framework for the representation of spatio-temporal irregularly-sampled data. The main objective of this paper consists of providing a thorough intercomparison exercise with appropriate benchmarking metrics to assess whether these approaches help to improve the SSH altimetric interpolation problem and to identify which one performs best in this context. We demonstrate how the newly introduced NN method is a significant improvement with a plug-and-play implementation and its ability to catch up the small scales ranging up to 40 km, inaccessible by the conventional methods so far. A clear gain is also demonstrated when assimilating jointly wide-swath SWOT and (aggregated) along-track nadir observations.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 19 条
[1]   SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves [J].
Ardhuin, Fabrice ;
Brandt, Peter ;
Gaultier, Lucile ;
Donlon, Craig ;
Battaglia, Alessandro ;
Boy, Francois ;
Casal, Tania ;
Chapron, Bertrand ;
Collard, Fabrice ;
Cravatte, Sophie ;
Delouis, Jean-Marc ;
De Witte, Erik ;
Dibarboure, Gerald ;
Engen, Geir ;
Johnsen, Harald ;
Lique, Camille ;
Lopez-Dekker, Paco ;
Maes, Christophe ;
Martin, Adrien ;
Marie, Louis ;
Menemenlis, Dimitris ;
Nouguier, Frederic ;
Peureux, Charles ;
Rampal, Pierre ;
Ressler, Gerhard ;
Rio, Marie-Helene ;
Rommen, Bjorn ;
Shutler, Jamie D. ;
Suess, Martin ;
Tsamados, Michel ;
Ubelmann, Clement ;
van Sebille, Erik ;
van den Oever, Martin ;
Stammer, Detlef .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[2]   On the resolutions of ocean altimetry maps [J].
Ballarotta, Maxime ;
Ubelmann, Clement ;
Pujol, Marie-Isabelle ;
Taburet, Guillaume ;
Fournier, Florent ;
Legeais, Jean-Francois ;
Faugere, Yannice ;
Delepoulle, Antoine ;
Chelton, Dudley ;
Dibarboure, Gerald ;
Picot, Nicolas .
OCEAN SCIENCE, 2019, 15 (04) :1091-1109
[3]   Mesoscale resolution capability of altimetry: Present and future [J].
Dufau, Claire ;
Orsztynowicz, Marion ;
Dibarboure, Gerald ;
Morrow, Rosemary ;
Le Traon, Pierre-Yves .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (07) :4910-4927
[4]  
Esteban-Fernandez D., 2014, TECHNICAL REPORT
[5]  
Fablet R., 2020, ARXIV200603653
[6]  
Fablet R., 2020, JOINT INTERPOLATION
[7]   Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields [J].
Fablet, Ronan ;
Phi Huynh Viet ;
Lguensat, Redouane .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (04) :647-657
[8]  
Gaultier L., 2010, TECHNICAL REPORT
[9]   The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction [J].
Gaultier, Lucile ;
Ubelmann, Clement ;
Fu, Lee-Lueng .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2016, 33 (01) :119-126
[10]   Data-Driven Interpolation of Sea Level Anomalies Using Analog Data Assimilation [J].
Lguensat, Redouane ;
Phi Huynh Viet ;
Sun, Miao ;
Chen, Ge ;
Tian Fenglin ;
Chapron, Bertrand ;
Fablet, Ronan .
REMOTE SENSING, 2019, 11 (07)