Rotation and lorentz transformations in 2x2 and 4x4 complex matrices and in polarized-light physics

被引:0
|
作者
November, LJ
机构
[1] National Solar Observatory, Natl. Optimal Astron. Observatories, Sunspot, NM 88349, Sacramento Peak
基金
美国国家科学基金会;
关键词
PHASE;
D O I
10.1016/S0024-3795(96)00515-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hermitian 2 x 2 matrices exhibit basic 3D rotational and 4D Lorentz transformation properties. These matrices arise naturally in representations of the time-averaged pair products or intensities of any two-element wave, giving rise to the light Stokes-parameter transformation properties on the Poincare sphere. Equivalent transformations are obtained for 4 x 4 anticommuting Hermitian Dirac matrices with two types of unitary matrices, corresponding to rotation and Lorentz transformations. Using exponential matrix representations, the 4 x 4 form can be related to the 2 x 2 form. The 4 x 4 representation has physical significance for the subset of intensity-distinguishable two-element standing-wave modes of a cavity, e.g. light standing waves. There is a basic resemblance between (1) the temporal differential equation for two-element standing waves in time, three observable ''Stokes'' parameters, and frequency and (2) the Dirac equation for spin-1/2 free-space particle states in time, three momenta, and particle rest mass. This resemblance is the basis for an optical analog with relativistic quantum mechanics which we describe. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:383 / 408
页数:26
相关论文
共 50 条
  • [41] Dynamic modeling of tree-type robotic systems by combining 3x3 rotation and 4x4 transformation matrices
    Shafei, A. M.
    Shafei, H. R.
    MULTIBODY SYSTEM DYNAMICS, 2018, 44 (04) : 367 - 395
  • [42] A NOTE ON GROUP COMMUTATORS OF 2X2 MATRICES
    ELIEZER, CJ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (10): : 1090 - &
  • [43] POLYNOMIAL-IDENTITIES FOR 2X2 MATRICES
    DRENSKY, V
    ACTA APPLICANDAE MATHEMATICAE, 1990, 21 (1-2) : 137 - 161
  • [44] On invariant 2x2 β-ensembles of random matrices
    Vivo, Pierpaolo
    Majumdar, Satya N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (19-20) : 4839 - 4855
  • [45] GENERATORS AND RELATIONS OF INVARIANTS OF 2X2 MATRICES
    ASLAKSEN, H
    TAN, EC
    ZHU, CB
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) : 1821 - 1832
  • [46] Mortality problem for 2x2 integer matrices
    Nuccio, C.
    Rodaro, E.
    SOFSEM 2008: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2008, 4910 : 400 - 405
  • [47] ADDITIVE COMMUTATORS OF RATIONAL 2X2 MATRICES
    TAUSSKY, O
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (01) : 1 - 6
  • [48] 2X2 CYCLIC MATRICES AND LUCAS POLYNOMIALS
    RAGHAVACHARYULU, IVV
    MATRIX AND TENSOR QUARTERLY, 1974, 25 (02): : 59 - 62
  • [49] Geometry of 2X2 Hermitian matrices II
    Huang, LP
    Wan, ZX
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (01): : 37 - 54
  • [50] The Core Inverse of a Product and 2x2 Matrices
    Ke, Yuanyuan
    Wang, Long
    Chen, Jianlong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 51 - 66