Isomorphisms of unitary forms of Kac-Moody groups over finite fields

被引:0
作者
Gramlich, Ralf [1 ]
Mars, Andreas [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Locally finite Kac-Moody group; Unitary form; Isomorphism problem; Twin building; Mostow rigidity; INVOLUTIONS;
D O I
10.1016/j.jalgebra.2009.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the methods developed in [Pierre-Emmanuel Caprace, "Abstract" homomorphisms of split Kac-Moody groups, Mem. Amer. Math. Soc. 198 (2009); Pierre-Emmanuel Caprace, Bernhard Muhlherr, Isomorphisms of Kac-Moody groups, Invent. Math. 161 (2005) 361-388; Pierre-Emmanuel Caprace, Bernhard Muhlherr, Isomorphisms of Kac-Moody groups which preserve bounded subgroups, Adv. Math. 206 (2006) 250-278] to solve the isomorphism problem of unitary forms of infinite split Kac-Moody groups over finite fields of square order. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:554 / 561
页数:8
相关论文
共 21 条
  • [1] Abramenko P, 2008, GRAD TEXTS MATH, V248, P1
  • [2] [Anonymous], 2002, ASTERISQUE
  • [3] [Anonymous], 1985, MATH HERITAGE ELIE C
  • [4] [Anonymous], 1999, METRIC SPACES NONPOS
  • [5] Isomorphisms of Kac-Moody groups
    Caprace, PE
    Mühlherr, B
    [J]. INVENTIONES MATHEMATICAE, 2005, 161 (02) : 361 - 388
  • [6] CAPRACE PE, ARXIV09011022V1
  • [7] Isomorphisms of Kac-Moody groups which preserve bounded subgroups
    Caprace, Pierre-Emmanuel
    Muhlherr, Bernhard
    [J]. ADVANCES IN MATHEMATICS, 2006, 206 (01) : 250 - 278
  • [8] Caprace PE, 2009, MEM AM MATH SOC, V198, pVII
  • [9] Davis M. W., 1994, LONDON MATH SOC LECT, V252, P108
  • [10] Davis MW., 2008, GEOMETRY TOPOLOGY CO