Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors

被引:151
作者
Kim, Gun Hee [1 ]
Ahn, Byung Du [1 ]
Shin, Hyun Soo [1 ]
Jeong, Woong Hee [1 ]
Kim, Hee Jin [2 ]
Kim, Hyun Jae [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[2] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
关键词
carrier mobility; gallium compounds; grain size; II-VI semiconductors; indium compounds; nanoelectronics; nanostructured materials; nanotechnology; semiconductor growth; semiconductor thin films; sol-gel processing; stacking faults; surface roughness; thin film transistors; wide band gap semiconductors; AMORPHOUS OXIDE SEMICONDUCTORS; CARRIER TRANSPORT; ROOM-TEMPERATURE; LAYER;
D O I
10.1063/1.3151827
中图分类号
O59 [应用物理学];
学科分类号
摘要
The effects of the indium content on characteristics of nanocrystalline InGaZnO (IGZO) films grown by a sol-gel method and their thin film transistors (TFTs) have been investigated. Excess indium incorporation into IGZO enhances the field effect mobilities of the TFTs due to the increase in conducting path ways and decreases the grain size and the surface roughness of the films because more InO2- ions induce cubic stacking faults with IGZO. These structural variations result in a decrease in density of interfacial trap sites at the semiconductor-gate insulator interface, leading to an improvement of the subthreshold gate swing of the TFTs.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors
    Han, Seung-Yeol
    Herman, Gregory S.
    Chang, Chih-hung
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) : 5166 - 5169
  • [32] Si-doping effect on solution-processed In-O thin-film transistors
    Hoang, Ha
    Hori, Tatsuki
    Yasuda, To-oru
    Kizu, Takio
    Tsukagoshi, Kazuhito
    Nabatame, Toshihide
    Bui Nguyen Quoc Trinh
    Fujiwara, Akihiko
    MATERIALS RESEARCH EXPRESS, 2019, 6 (02):
  • [33] Operational stability of solution-processed indium-oxide thin-film transistors: Environmental condition and electrical stress
    Baang, Sungkeun
    Lee, Hyeonju
    Zhang, Xue
    Park, Jaehoon
    Kim, Won-Pyo
    Ko, Young-Woong
    Piao, Shang Hao
    Choi, Hyoung Jin
    Kwon, Jin-Hyuk
    Bae, Jin-Hyuk
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (01) : 151 - 158
  • [34] High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors
    Kim, Myung-Gil
    Kim, Hyun Sung
    Ha, Young-Geun
    He, Jiaqing
    Kanatzidis, Mercouri G.
    Facchetti, Antonio
    Marks, Tobin J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (30) : 10352 - 10364
  • [35] The Influence of Channel Compositions on the Electrical Properties of Solution-Processed Indium-Zinc Oxide Thin-Film Transistors
    Chen, Chang-Ken
    Hsieh, Hsing-Hung
    Shyue, Jing-Jong
    Wu, Chung-Chih
    JOURNAL OF DISPLAY TECHNOLOGY, 2009, 5 (12): : 509 - 514
  • [36] Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors
    Li, Yanwei
    Zhao, Chun
    Zhu, Deliang
    Cao, Peijiang
    Han, Shun
    Lu, Youming
    Fang, Ming
    Liu, Wenjun
    Xu, Wangying
    NANOMATERIALS, 2020, 10 (05)
  • [37] Low-temperature, solution-processed metal oxide thin film transistors
    Jeong, Sunho
    Moon, Jooho
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) : 1243 - 1250
  • [38] High-Performance Solution-Processed ZrInZnO Thin-Film Transistors
    Phan Trong Tue
    Miyasako, Takaaki
    Li, Jinwang
    Huynh Thi Cam Tu
    Inoue, Satoshi
    Tokumitsu, Eisuke
    Shimoda, Tatsuya
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (01) : 320 - 326
  • [39] High Performance Solution-Processed and Lithographically Patterned Zinc-Tin Oxide Thin-Film Transistors with Good Operational Stability
    Park, Sung Kyu
    Kim, Yong-Hoon
    Kim, Hyun-Soo
    Han, Jeong-In
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (07) : H256 - H258
  • [40] One-Volt, Solution-Processed InZnO Thin-Film Transistors
    Cai, Wensi
    Li, Haiyun
    Zang, Zhigang
    IEEE ELECTRON DEVICE LETTERS, 2021, 42 (04) : 525 - 528